Journal of Mathematics of Kyoto University

The reverse-order law $(AB)^{\dag}=B^{\dag}(A^{\dag}ABB^{\dag})^{\dag}A^{\dag}$ and its equivalent equalities

Yongge Tian

Full-text: Open access

Abstract

This paper collects 26 conditions for the reverse-order law $(AB)^{\dagger} = B^{\dagger}(A^{\dagger}ABB^{\dagger})^{\dagger}A^{\dagger}$ to hold for the Moore-Penrose inverse of matrix.

Article information

Source
J. Math. Kyoto Univ., Volume 45, Number 4 (2005), 841-850.

Dates
First available in Project Euclid: 14 August 2009

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1250281660

Digital Object Identifier
doi:10.1215/kjm/1250281660

Mathematical Reviews number (MathSciNet)
MR2226633

Zentralblatt MATH identifier
1099.15004

Subjects
Primary: 15A09: Matrix inversion, generalized inverses

Citation

Tian, Yongge. The reverse-order law $(AB)^{\dag}=B^{\dag}(A^{\dag}ABB^{\dag})^{\dag}A^{\dag}$ and its equivalent equalities. J. Math. Kyoto Univ. 45 (2005), no. 4, 841--850. doi:10.1215/kjm/1250281660. https://projecteuclid.org/euclid.kjm/1250281660


Export citation