Journal of Mathematics of Kyoto University

Endomorphisms of smooth projective $3$-folds with nonnegative Kodaira dimension, II

Yoshio Fujimoto and Noboru Nakayama

Full-text: Open access

Abstract

This article is a continuation of the paper [6]. Smooth complex projective 3-folds with nonnegative Kodaira dimension admitting nontrivial surjective endomorphisms are completely determined. Especially, it is proved that, for such a 3-fold $X$, there exist a finite étale Galois covering $\Tilde{X} \longrightarrow X$ and an abelian scheme structure $\Tilde{X} \longrightarrow T$ over a smooth variety $T$ of dimension $\leq 2$.

Article information

Source
J. Math. Kyoto Univ., Volume 47, Number 1 (2007), 79-114.

Dates
First available in Project Euclid: 14 August 2009

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1250281069

Digital Object Identifier
doi:10.1215/kjm/1250281069

Mathematical Reviews number (MathSciNet)
MR2359102

Zentralblatt MATH identifier
1138.14023

Subjects
Primary: 14J30: $3$-folds [See also 32Q25]
Secondary: 14E30: Minimal model program (Mori theory, extremal rays)

Citation

Fujimoto, Yoshio; Nakayama, Noboru. Endomorphisms of smooth projective $3$-folds with nonnegative Kodaira dimension, II. J. Math. Kyoto Univ. 47 (2007), no. 1, 79--114. doi:10.1215/kjm/1250281069. https://projecteuclid.org/euclid.kjm/1250281069


Export citation