Journal of Symbolic Logic

On properties of (weakly) small groups

Cédric Milliet

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


A group is small if it has only countably many complete n-types over the empty set for each natural number n. More generally, a group G is weakly small if it has only countably many complete 1-types over every finite subset of G. We show here that in a weakly small group, subgroups which are definable with parameters lying in a finitely generated algebraic closure satisfy the descending chain conditions for their traces in any finitely generated algebraic closure. An infinite weakly small group has an infinite abelian subgroup, which may not be definable. A small nilpotent group is the central product of a definable divisible group with a definable one of bounded exponent. In a group with simple theory, any set of pairwise commuting elements is contained in a definable finite-by-abelian subgroup. First corollary: a weakly small group with simple theory has an infinite definable finite-by-abelian subgroup. Secondly, in a group with simple theory, a solvable group A of derived length n is contained in an A-definable almost solvable group of class at most 2n-1.

Article information

J. Symbolic Logic, Volume 77, Issue 1 (2012), 94-110.

First available in Project Euclid: 20 January 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 03C45, 03C60, 20E45, 20E99, 20F18, 20F24

Small group weakly small group Cantor-Bendixson rank local chain condition infinite abelian subgroup group in a simple theory infinite finite-by-abelian subgroup nilpotent group


Milliet, Cédric. On properties of (weakly) small groups. J. Symbolic Logic 77 (2012), no. 1, 94--110. doi:10.2178/jsl/1327068693.

Export citation


  • Ricardo de Aldama Chaînes et Dépendance, Ph.D. thesis, Lyon,2009.
  • –––– A result on definable groups without the independence property, Bulletin of Symbolic Logic, to appear.
  • Reinhold Baer The subgroup of the elements of finite order of an abelian group, The Annals of Mathematics, Second Series, vol. 37(1936), no. 4, pp. 766–781.
  • Walter Baur, Gregory Cherlin, and Angus Macintyre Totally categorical groups and rings, Journal of Algebra, vol. 57(1979), no. 2, pp. 407–440.
  • Chantal Berline and Daniel Lascar Superstable groups, Annals of Pure and Applied Logic, vol. 30(1986), pp. 1–43.
  • Alexandre Borovik and Ali Nesin Groups of finite Morley rank, Oxford University Press,1994.
  • Gregory Cherlin Groups of small Morley rank, Annals of Mathematical Logic, vol. 17(1979), pp. 1–28.
  • David M. Evans and Frank O. Wagner Supersimple $\omega$-categorical groups and theories, Journal of Symbolic Logic, vol. 65(2000), no. 2, pp. 767–776.
  • Ulrich Felgner On $\aleph_0$-categorical extra-special $p$-groups, Logique et Analyse, vol. 71-72(1975), pp. 407–428.
  • László Fuchs Infinite abelian groups, Academic Press,1970.
  • Philip Hall and C.R. Kulatilaka A property of locally finite groups, Journal of the London Mathematical Society, vol. 39(1964), pp. 235–239.
  • Itay Kaplan, Thomas Scanlon, and Frank O. Wagner Artin-Schreier extensions in dependent and simple fields, to be published.
  • Michael Morley Categoricity in power, Transactions of the American Mathematical Society, vol. 114(1965), no. 2, pp. 514–538.
  • Ali Nesin Poly-separated and $\omega$-stable nilpotent groups, Journal of Symbolic Logic, vol. 56(1991), no. 2, pp. 694–699.
  • Bernhard H. Neumann Groups covered by permutable subsets, Journal of the London Mathematical Society, vol. 29(1954), pp. 236–248.
  • Jacob M. Plotkin ZF and locally finite groups, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 27(1981), pp. 375–379.
  • Bruno Poizat Groupes stables, Nur Al-Mantiq Wal-Ma'rifah,1987.
  • –––– Quelques tentatives de définir une notion générale de groupes et de corps de dimension un et de déterminer leurs propriétés algébriques, Confluentes Mathematici, à paraître,2009.
  • –––– Groups of small Cantor rank, Journal of Symbolic Logic, vol. 75(2010), no. 1, pp. 346–354.
  • Vera Puninskaya Vaught's conjecture, Journal of Mathematical Sciences, vol. 109(2002), no. 3, pp. 1649–1668.
  • Joachim Reineke Minimale Gruppen, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 21(1975), pp. 357–359.
  • Günter Schlichting Operationen mit periodischen Stabilisatoren, Archiv der Matematik, vol. 34(1980), pp. 97–99.
  • Saharon Shelah Dependent first order theories, continued, Israel Journal of Mathematics, vol. 173(2009), pp. 1–60.
  • Frank O. Wagner Small stable groups and generics, Journal of Symbolic Logic, vol. 56(1991), pp. 1026–1037.
  • –––– Quasi-endomorphisms in small stable groups, Journal of Symbolic Logic, vol. 58(1993), pp. 1044–1051.
  • –––– Simple theories, Kluwer Academic Publishers, Dordrecht,2000.