Journal of Symbolic Logic

Finitude simple et structures o-minimalesFiniteness property implies o-minimality

Jean-Marie Lion

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


L’objet de ce texte est de montrer que des fonctions qui appartiennent à une famille vérifiant une propriété de finitude a priori non uniforme sont en fait définissables dans une structure o-minimale.


We consider a family of differential algebras of real functions on real euclidean spaces, stable under right composition by affine maps. We prove that under a weak finiteness property, there is an o-minimal expansion of the ordered field of real numbers in which all these functions are definable.

Article information

J. Symbolic Logic, Volume 67, Issue 4 (2002), 1616-1622.

First available in Project Euclid: 18 September 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14P15: Real analytic and semianalytic sets [See also 32B20, 32C05]
Secondary: 03C64: Model theory of ordered structures; o-minimality 32B20: Semi-analytic sets and subanalytic sets [See also 14P15]


Lion, Jean-Marie. Finitude simple et structures o-minimales. J. Symbolic Logic 67 (2002), no. 4, 1616--1622. doi:10.2178/jsl/1190150303.

Export citation