Journal of Symbolic Logic

A Proof-Theoretic Characterization of the Primitive Recursive Set Functions

Michael Rathjen

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

Let $\mathrm{KP}^-$ be the theory resulting from Kripke-Platek set theory by restricting Foundation to Set Foundation. Let $G: V \rightarrow V (V:=$ universe of sets) be a $\triangle_0$-definable set function, i.e. there is a $\triangle_0$-formula $\varphi(x, y)$ such that $\varphi(x, G(x))$ is true for all sets $x$, and $V \models \forall x \exists!y\varphi (x, y)$. In this paper we shall verify (by elementary proof-theoretic methods) that the collection of set functions primitive recursive in $G$ coincides with the collection of those functions which are $\Sigma_1$-definable in $\mathrm{KP}^- + \Sigma_1$-Foundation $+ \forall x \exists!y\varphi (x, y)$. Moreover, we show that this is still true if one adds $\Pi_1$-Foundation or a weak version of $\triangle_0$-Dependent Choices to the latter theory.

Article information

Source
J. Symbolic Logic, Volume 57, Issue 3 (1992), 954-969.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183744050

Mathematical Reviews number (MathSciNet)
MR1187458

Zentralblatt MATH identifier
0761.03016

JSTOR
links.jstor.org

Citation

Rathjen, Michael. A Proof-Theoretic Characterization of the Primitive Recursive Set Functions. J. Symbolic Logic 57 (1992), no. 3, 954--969. https://projecteuclid.org/euclid.jsl/1183744050


Export citation