Journal of Symbolic Logic

Why Solovay Real Produces Cohen Real

Janusz Pawlikowski

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

An explanation is given of why, after adding to a model $M$ of ZFC first a Solovay real $r$ and next a Cohen real $c$, in $M\lbrack r\rbrack\lbrack c\rbrack$ a Cohen real over $M\lbrack c\rbrack$ is produced. It is also shown that a Solovay algebra iterated with a Cohen algebra can be embedded into a Cohen algebra iterated with a Solovay algebra.

Article information

Source
J. Symbolic Logic, Volume 51, Issue 4 (1986), 957-968.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183742234

Mathematical Reviews number (MathSciNet)
MR865922

Zentralblatt MATH identifier
0622.03036

JSTOR
links.jstor.org

Citation

Pawlikowski, Janusz. Why Solovay Real Produces Cohen Real. J. Symbolic Logic 51 (1986), no. 4, 957--968. https://projecteuclid.org/euclid.jsl/1183742234


Export citation