Journal of Symplectic Geometry

Symplectic hypersurfaces and transversality in Gromov-Witten theory

Kai Cieliebak and Klaus Mohnke

Full-text: Open access

Abstract

We present a new method to prove transversality for holomorphic curves in symplectic manifolds, and show how it leads to a definition of genus zero Gromov-Witten invariants. The main idea is to introduce additional marked points that are mapped to a symplectic hypersurface of high degree in order to stabilize the domains of holomorphic maps.

Article information

Source
J. Symplectic Geom., Volume 5, Number 3 (2007), 281-356.

Dates
First available in Project Euclid: 6 May 2008

Permanent link to this document
https://projecteuclid.org/euclid.jsg/1210083200

Mathematical Reviews number (MathSciNet)
MR2399678

Zentralblatt MATH identifier
1149.53052

Citation

Cieliebak, Kai; Mohnke, Klaus. Symplectic hypersurfaces and transversality in Gromov-Witten theory. J. Symplectic Geom. 5 (2007), no. 3, 281--356. https://projecteuclid.org/euclid.jsg/1210083200


Export citation