Journal of Symplectic Geometry

Equivariant symplectic Hodge theory and the dGδ-lemma

Yi Lin and Reyer Sjamaar

Abstract

Consider a Hamiltonian action of a compact Lie group on a symplectic manifold which has the strong Lefschetz property. We establish an equivariant version of the Merkulov- Guillemin -lemma and an improved version of the Kirwan- Ginzburg equivariant formality theorem, which says that every cohomology class has a canonical equivariant extension.

Article information

Source
J. Symplectic Geom., Volume 2, Number 2 (2004), 267-278.

Dates
First available in Project Euclid: 1 September 2004

Permanent link to this document
https://projecteuclid.org/euclid.jsg/1094072007

Mathematical Reviews number (MathSciNet)
MR2108377

Citation

Lin, Yi; Sjamaar, Reyer. Equivariant symplectic Hodge theory and the d G δ -lemma. J. Symplectic Geom. 2 (2004), no. 2, 267--278. https://projecteuclid.org/euclid.jsg/1094072007


Export citation