Journal of Symplectic Geometry

A note on mean curvature, Maslov class and symplectic area of Lagrangian immersions

Kai Cieliebak and Edward Goldstein

Abstract

In this note we prove a simple relation between the mean curvature form, symplectic area, and the Maslov class of a Lagrangian immersion in a Kähler-Einstein manifold. An immediate consequence is that in Kähler-Einstein manifolds with positive scalar curvature, minimal Lagrangian immersions are monotone.

Article information

Source
J. Symplectic Geom., Volume 2, Number 2 (2004), 261-266.

Dates
First available in Project Euclid: 1 September 2004

Permanent link to this document
https://projecteuclid.org/euclid.jsg/1094072006

Mathematical Reviews number (MathSciNet)
MR2108376

Zentralblatt MATH identifier
1080.53078

Citation

Cieliebak, Kai; Goldstein, Edward. A note on mean curvature, Maslov class and symplectic area of Lagrangian immersions. J. Symplectic Geom. 2 (2004), no. 2, 261--266. https://projecteuclid.org/euclid.jsg/1094072006


Export citation