Journal of the Mathematical Society of Japan

Relative stability associated to quantised extremal Kähler metrics

Yoshinori HASHIMOTO

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study algebro-geometric consequences of the quantised extremal Kähler metrics, introduced in the previous work of the author. We prove that the existence of quantised extremal metrics implies weak relative Chow polystability. As a consequence, we obtain asymptotic weak relative Chow polystability and relative $K$-semistability of extremal manifolds by using quantised extremal metrics; this gives an alternative proof of the results of Mabuchi and Stoppa–Székelyhidi. In proving them, we further provide an explicit local density formula for the equivariant Riemann–Roch theorem.

Article information

Source
J. Math. Soc. Japan, Volume 71, Number 3 (2019), 861-880.

Dates
Received: 23 February 2018
First available in Project Euclid: 25 April 2019

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1556179398

Digital Object Identifier
doi:10.2969/jmsj/79947994

Mathematical Reviews number (MathSciNet)
MR3984245

Subjects
Primary: 32Q26: Notions of stability
Secondary: 53C55: Hermitian and Kählerian manifolds [See also 32Cxx]

Keywords
extremal Kähler metrics relative weak Chow stability relative $K$-stability

Citation

HASHIMOTO, Yoshinori. Relative stability associated to quantised extremal Kähler metrics. J. Math. Soc. Japan 71 (2019), no. 3, 861--880. doi:10.2969/jmsj/79947994. https://projecteuclid.org/euclid.jmsj/1556179398


Export citation

References

  • [1] V. Apostolov and H. Huang, A splitting theorem for extremal Kähler metrics, J. Geom. Anal., 25 (2015), 149–170.
  • [2] R. Berman, B. Berndtsson and J. Sjöstrand, A direct approach to Bergman kernel asymptotics for positive line bundles, Ark. Mat., 46 (2008), 197–217.
  • [3] O. Biquard, Métriques kählériennes à courbure scalaire constante: unicité, stabilité, Séminaire Bourbaki, 2004/2005, Astérisque, (2006), no. 307, Exp. No. 938, vii, 1–31.
  • [4] T. Bouche, Inégalités de Morse pour la $d''$-cohomologie sur une variété holomorphe non compacte, Ann. Sci. École Norm. Sup. (4), 22 (1989), 501–513.
  • [5] E. Calabi, Extremal Kähler metrics, II, Differential geometry and complex analysis, Springer, Berlin, 1985, 95–114.
  • [6] R. Dervan, Relative K-stability for Kähler manifolds, Math. Ann., 372 (2018), 859–889.
  • [7] S. K. Donaldson, Scalar curvature and projective embeddings, I, J. Differential Geom., 59 (2001), 479–522.
  • [8] S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom., 62 (2002), 289–349.
  • [9] S. K. Donaldson, Lower bounds on the Calabi functional, J. Differential Geom., 70 (2005), 453–472.
  • [10] A. Fujiki, On automorphism groups of compact Kähler manifolds, Invent. Math., 44 (1978), 225–258.
  • [11] A. Futaki, Asymptotic Chow polystability in Kähler geometry, Fifth International Congress of Chinese Mathematicians, Part 1, 2, AMS/IP Stud. Adv. Math., 51, pt. 1, vol. 2, Amer. Math. Soc., Providence, RI, 2012, 139–153.
  • [12] A. Futaki and T. Mabuchi, Uniqueness and periodicity of extremal Kähler vector fields, Proceedings of GARC Workshop on Geometry and Topology '93 (Seoul, 1993), Lecture Notes Ser., 18, Seoul Nat. Univ., 1993, 217–239.
  • [13] Y. Hashimoto, Quantisation of extremal Kähler metrics, preprint, arXiv:1508.02643 (2015).
  • [14] S. Kobayashi, Transformation groups in differential geometry, Classics in Mathematics, Springer-Verlag, Berlin, 1995, reprint of the 1972 edition.
  • [15] J. Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 32, Springer-Verlag, Berlin, 1996.
  • [16] C. LeBrun and S. R. Simanca, Extremal Kähler metrics and complex deformation theory, Geom. Funct. Anal., 4 (1994), 298–336.
  • [17] C. Li and C. Xu, Special test configuration and K-stability of Fano varieties, Annals of Math., 180 (2014), 197–232.
  • [18] Z. Lu, On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch, Amer. J. Math., 122 (2000), 235–273.
  • [19] H. Luo, Geometric criterion for Gieseker–Mumford stability of polarized manifolds, J. Differential Geom., 49 (1998), 577–599.
  • [20] T. Mabuchi, Stability of extremal Kähler manifolds, Osaka J. Math., 41 (2004), 563–582.
  • [21] T. Mabuchi, An energy-theoretic approach to the Hitchin–Kobayashi correspondence for manifolds, I, Invent. Math., 159 (2005), 225–243.
  • [22] T. Mabuchi, An energy-theoretic approach to the Hitchin–Kobayashi correspondence for manifolds, II, Osaka J. Math., 46 (2009), 115–139.
  • [23] T. Mabuchi, Asymptotics of polybalanced metrics under relative stability constraints, Osaka J. Math., 48 (2011), 845–856.
  • [24] T. Mabuchi, Relative stability and extremal metrics, J. Math. Soc. Japan, 66 (2014), 535–563.
  • [25] T. Mabuchi, Asymptotic polybalanced kernels on extremal Kähler manifolds, Asian J. Math., 22 (2018), 647–664.
  • [26] D. Mumford, Stability of projective varieties, Enseignement Math. (2), 23 (1977), 39–110.
  • [27] D. Mumford, J. Fogarty and F. Kirwan, Geometric invariant theory, third ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2), [Results in Mathematics and Related Areas (2)], 34, Springer-Verlag, Berlin, 1994.
  • [28] J. H. Rawnsley, Coherent states and Kähler manifolds, Quart. J. Math. Oxford Ser. (2), 28 (1977), 403–415.
  • [29] J. Ross and R. Thomas, A study of the Hilbert–Mumford criterion for the stability of projective varieties, J. Algebraic Geom., 16 (2007), 201–255.
  • [30] W.-D. Ruan, Canonical coordinates and Bergmann [Bergman] metrics, Comm. Anal. Geom., 6 (1998), 589–631.
  • [31] Y. Sano, Communication on $\sigma$-balanced metrics, 2011 Complex Geometry and Symplectic Geometry Conference, University of Science and Technology in China.
  • [32] Y. Sano and C. Tipler, A moment map picture of relative balanced metrics on extremal Kähler manifolds, preprint, arXiv:1703.09458 (2017).
  • [33] R. Seyyedali, Relative Chow stability and extremal metrics, Adv. Math., 316 (2017), 770–805.
  • [34] J. Stoppa and G. Székelyhidi, Relative K-stability of extremal metrics, J. Eur. Math. Soc. (JEMS), 13 (2011), 899–909.
  • [35] G. Székelyhidi, Extremal metrics and K-stability, Ph.D. thesis, University of London, 2006.
  • [36] G. Székelyhidi, Extremal metrics and K-stability, Bull. Lond. Math. Soc., 39 (2007), 76–84.
  • [37] G. Székelyhidi, An introduction to extremal Kähler metrics, Graduate Studies in Mathematics, 152, Amer. Math. Soc., Providence, RI, 2014.
  • [38] G. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., 32 (1990), 99–130.
  • [39] C. Tipler, Relative Chow stability and optimal weights, preprint, arXiv:1710.02536 (2017).
  • [40] S. T. Yau, Nonlinear analysis in geometry, Enseign. Math. (2), 33 (1987), 109–158.
  • [41] S. Zelditch, Szegő kernels and a theorem of Tian, Internat. Math. Res. Notices, 1998 (1998), no. 6, 317–331.
  • [42] S. Zhang, Heights and reductions of semi-stable varieties, Compositio Math., 104 (1996), 77–105.