Journal of the Mathematical Society of Japan

Minkowski content of the intersection of a Schramm-Loewner evolution (SLE) curve with the real line

Gregory F. LAWLER

Full-text: Open access


The Schramm-Loewner evolution (SLE) is a probability measure on random fractal curves that arise as scaling limits of two-dimensional statistical physics systems. In this paper we survey some results about the Hausdorff dimension and Minkowski content of ${\rm SLE}_\kappa$ paths and then extend the recent work on Minkowski content to the intersection of an SLE path with the real line.

Article information

J. Math. Soc. Japan, Volume 67, Number 4 (2015), 1631-1669.

First available in Project Euclid: 27 October 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J67: Stochastic (Schramm-)Loewner evolution (SLE)

Schramm-Loewner evolution Hausdorff dimension Minkowski content


LAWLER, Gregory F. Minkowski content of the intersection of a Schramm-Loewner evolution (SLE) curve with the real line. J. Math. Soc. Japan 67 (2015), no. 4, 1631--1669. doi:10.2969/jmsj/06741631.

Export citation


  • T. Alberts and M. Kozdron, Intersection probabilities for a chordal SLE path and a semicircle, Electron Comm. Probab., 13 (2008), 448–460.
  • T. Alberts and S. Sheffield, Hausdorff dimension of the SLE curve intersected with the real line, Electron J. Probab., 40 (2008), 1166–1188.
  • T. Alberts and S. Sheffield, The covariant measure of SLE on the boundary, Probab. Th. Rel. Fields, 149 (2011), 311–371.
  • V. Beffara, The dimension of SLE curves, Annals of Probab., 36 (2008), 1421–1452.
  • P. Duren, Univalent Functions, Springer-Verlag, 1983.
  • L. Field and G. Lawler, Escape probability and transience for SLE, Electron. J. Probab., 20 (2015), Article no.,10.
  • C. Garban, S. Rohde and O. Schramm, Continuity of the SLE trace in simply connected domains, Israel J. Math., 187 (2012), 23–36.
  • K. Itô and H. McKean, Diffusion Processes and their Sample Paths, Springer-Verlag, 1974.
  • F. Johansson Viklund and G. Lawler, Almost sure multifractal spectrum for the tip of an SLE curve, Acta Math., 209 (2012), 265–322.
  • G. Lawler, Schramm-Loewner evolution, In: Statistical Mechanics, (eds. S. Sheffield and T. Spencer), IAS/Park City Mathematical Series, AMS, 2009, 231–295.
  • G. Lawler, Multifractal analysis of the reverse flow for SLE, In: Fractal Geometry and Stochastics IV, (eds. C. Brandt, P. Mörters, and M. Zähle), Birkhäuser, 2009, 73–107.
  • G. Lawler, Continuity of radial and two-sided radial ${\rm SLE}_\kappa$ at the terminal point, Contemporary Mathematics, 590 (2013), 101–124.
  • G. Lawler, O. Schramm and W. Werner, Conformal restriction: the chordal case, J. Amer. Math. Soc., 16 (2003), 917–955.
  • G. Lawler and M. Rezaei, Minkowski content and natural parameterization for the Schramm-Loewner evolution, Annals of Probab., 43 (2015), 1082–1120.
  • G. Lawler and S. Sheffield, A natural parametrization for the Schramm-Loewner evolution, Annals of Probab., 39 (2011), 1896–1937.
  • G. Lawler and B. Werness, Multi-point Green's functions for SLE and an estimate of Beffara, Annals of Probab., 41 (2013), 1513–1555.
  • G. Lawler and W. Zhou, SLE curves and natural parametrization, Annals of Probab., 41 (2013), 1556–1584.
  • J. Miller and H. Wu, Intersections of SLE Paths: the double and cut point dimension of SLE, arXiv:1303.4725.
  • M. Rezaei, Hausdorff dimension of SLE curves, arXiv:1212:5847.
  • S. Rohde and O. Schramm, Basic properties of SLE, Ann. of Math., 161 (2005), 879–920.
  • O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math., 118 (2000), 221–288.
  • O. Schramm and W. Zhou, Boundary proximity of SLE, Probab. Th. Rel. Fields, 146 (2010), 435–450.
  • S. J. Taylor, The exact Hausdorff measure of the sample path for planar Brownian motion, Proc. Cambridge Philos. Soc., 60 (1964), 253–258.