Journal of the Mathematical Society of Japan

Spin representations of twisted central products of double covering finite groups and the case of permutation groups

Takeshi HIRAI and Akihito HORA

Full-text: Open access

Abstract

Let $S$ be a finite group with a character, $\rm sgn$, of order 2, and $S'$ its central extension by a group $Z=\langle z\rangle$ of order 2. A representation $\pi$ of $S'$ is called {\it spin} if $\pi(z\sigma')=-\pi(\sigma')$ $(\sigma'\in S')$, and the set of all equivalence classes of spin irreducible representations (= IRs) of $S'$ is called the {\it spin dual} of $S'$. Take a finite number of such triplets $(S'_j,z_j,{\rm sgn}_j)$ $(1\le j\le m)$. We define twisted central product $S'=S'_1\hat{*}S'_2\hat{*}\cdots\hat{*}S'_m$ as a double covering of $S=S_1\times\cdots \times S_m$, $S_j=S'_j/\langle z_j\rangle$, and for spin IRs $\pi_j$ of $S'_j$, define twisted central product $\pi=\pi_1\hat{*}\pi_2\hat{*}\cdots\hat{*}\pi_m$ as a spin IR of $S'$. We study their characters and prove that the set of spin IRs $\pi$ of this type gives a complete set of representatives of the spin dual of $S'$. These results are applied to the case of representation groups $S'$ for $S={\mathfrak S}_n$ and ${\mathfrak A}_n$, and their (Frobenius-)Young type subgroups.

Article information

Source
J. Math. Soc. Japan, Volume 66, Number 4 (2014), 1191-1226.

Dates
First available in Project Euclid: 23 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1414090240

Digital Object Identifier
doi:10.2969/jmsj/06641191

Mathematical Reviews number (MathSciNet)
MR3272597

Zentralblatt MATH identifier
1329.20010

Subjects
Primary: 20B05: General theory for finite groups 20C25: Projective representations and multipliers
Secondary: 20B35: Subgroups of symmetric groups 20C15: Ordinary representations and characters 20C30: Representations of finite symmetric groups

Keywords
spin representation projective representation twisted central product character symmetric group

Citation

HIRAI, Takeshi; HORA, Akihito. Spin representations of twisted central products of double covering finite groups and the case of permutation groups. J. Math. Soc. Japan 66 (2014), no. 4, 1191--1226. doi:10.2969/jmsj/06641191. https://projecteuclid.org/euclid.jmsj/1414090240


Export citation

References

  • J. W. Davies and A. O. Morris, The Schur multiplier of the generalized symmetric group, J. London Math. Soc. (2), 8 (1974), 615–620.
  • T. Hirai, E. Hirai and A. Hora, Towards projective representations and spin characters of finite and infinite complex reflection groups, In: Proceedings of the Fourth German-Japanese Symposium, Infinite Dimensional Harmonic Analysis IV, Tokyo, 2007, (eds. J. Hilgert, A. Hora, T. Kawazoe, K. Nishiyama and M. Voit), World Scientific, 2009, pp.,112–128.
  • T. Hirai, E. Hirai and A. Hora, Projective representations and spin characters of complex reflection groups $G(m,p,n)$ and $G(m,p,\infty)$, I, In: Projective Representations and Spin Characters of Complex Reflection Groups $G(m,p,n)$ and $G(m,p,\infty)$, MSJ Mem., 29, Math. Soc. Japan, Tokyo, 2013, pp.,49–122.
  • T. Hirai, A. Hora and E. Hirai, Projective representations and spin characters of complex reflection groups $G(m,p,n)$ and $G(m,p,\infty)$, II, In: Projective Representations and Spin Characters of Complex Reflection Groups $G(m,p,n)$ and $G(m,p,\infty)$, MSJ Mem., 29, Math. Soc. Japan, Tokyo, 2013, pp.,123–272.
  • T. Hirai, A. Hora and E. Hirai, Introductory expositions on projective representations of groups, In: Projective Representations and Spin Characters of Complex Reflection Groups $G(m,p,n)$ and $G(m,p,\infty)$, MSJ Mem., 29, Math. Soc. Japan, Tokyo, 2013, pp.,1–47.
  • P. N. Hoffman and J. F. Humphreys, Twisted products and projective representations of monomial groups, Exposition. Math., 3 (1985), 91–95.
  • P. N. Hoffman and J. F. Humphreys, Projective Representations of the Symmetric Groups, $Q$-Functions and Shifted Tableaux, Oxford Math. Monogr., Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992.
  • J. F. Humphreys and S. Tickner, Principal indecomposable modules for twisted central products, Comm. Algebra, 25 (1997), 357–368.
  • S. Ihara and T. Yokonuma, On the second cohomology groups (Schur-multipliers) of finite reflection groups, J. Fac. Sci. Univ. Tokyo Sect. I, 11 (1965), 155–171.
  • G. Karpilovski, The Schur Multiplier, London Math. Soc. Monogr. (N.S.), 2, The Clarendon Press, Oxford University Press, New York, 1987.
  • S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis, Transl. Math. Monogr., 219, Amer. Math. Soc., Providence, RI, 2003.
  • E. W. Read, On the Schur multipliers of the finite imprimitive unitary reflection groups $G(m,p,n)$, J. London Math. Soc. (2), 13 (1976), 150–154.
  • J. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math., 127 (1904), 20–50.
  • J. Schur, Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math., 132 (1907), 85–137.
  • J. Schur, Über die Darstellung der symmetrischen und der alternierenden Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math., 139 (1911), 155–250.
  • A. M. Vershik and S. V. Kerov, Asymptotic theory of characters of the symmetric group, Funct. Anal. Appl., 15 (1981), 246–255; Russian original, 15, no.,4 (1981), 15–27.