Journal of the Mathematical Society of Japan

Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of $B$-orbits

Lucas FRESSE

Full-text: Open access

Abstract

We consider the intersection of the conjugacy class of a nilpotent matrix with the space of upper triangular matrices. We give necessary and sufficient conditions for this intersection to be a union of finitely many orbits for the action by conjugation of the group of invertible upper triangular matrices.

Article information

Source
J. Math. Soc. Japan, Volume 65, Number 3 (2013), 967-992.

Dates
First available in Project Euclid: 23 July 2013

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1374586631

Digital Object Identifier
doi:10.2969/jmsj/06530967

Mathematical Reviews number (MathSciNet)
MR3084986

Zentralblatt MATH identifier
1350.17006

Subjects
Primary: 17B08: Coadjoint orbits; nilpotent varieties
Secondary: 20G99: None of the above, but in this section 05E10: Combinatorial aspects of representation theory [See also 20C30]

Keywords
nilpotent matrices nilpotent orbits spherical varieties orbital varieties

Citation

FRESSE, Lucas. Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of $B$-orbits. J. Math. Soc. Japan 65 (2013), no. 3, 967--992. doi:10.2969/jmsj/06530967. https://projecteuclid.org/euclid.jmsj/1374586631


Export citation

References

  • M. Brion, Quelques propriétés des espaces homogènes sphériques, Manuscripta Math., 55 (1986), 191–198.
  • L. Fresse, On the singularity of some special components of Springer fibers, J. Lie Theory, 21 (2011), 205–242.
  • L. Fresse and A. Melnikov, On the singularity of the irreducible components of a Springer fiber in $\mathfrak{sl}_n$, Selecta Math. (N.S.), 16 (2010), 393–418.
  • L. Fresse and A. Melnikov, Smooth orbital varieties and orbital varieties with a dense $B$-orbit, Int. Math. Res. Not., 2013 (2013), 1122–1203.
  • F. Y. C. Fung, On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory, Adv. Math., 178 (2003), 244–276.
  • M. Gerstenhaber, On dominance and varieties of commuting matrices, Ann. of Math. (2), 73 (1961), 324–348.
  • W. H. Hesselink, A classification of the nilpotent triangular matrices, Compositio Math., 55 (1985), 89–133.
  • L. Hille and G. Röhrle, A classification of parabolic subgroups of classical groups with a finite number of orbits on the unipotent radical, Transform. Groups, 4 (1999), 35–52.
  • A. Joseph, On the variety of a highest weight module, J. Algebra, 88 (1984), 238–278.
  • A. Melnikov, Description of B-orbit closures of order 2 in upper-triangular matrices, Transform. Groups, 11 (2006), 217–247.
  • A. Melnikov, B-orbits of nilpotent order 2 and link patterns, preprint..
  • D. Mertens, Über einen Satz von Spaltenstein, University of Wuppertal, preprint.
  • D. I. Panyushev, Complexity and nilpotent orbits, Manuscripta Math., 83 (1994), 223–237.
  • R. W. Richardson, Jr., Conjugacy classes in parabolic subgroups of semisimple algebraic groups, Bull. London Math. Soc., 6 (1974), 21–24.
  • N. Spaltenstein, On the fixed point set of a unipotent element on the variety of Borel subgroups, Topology, 16 (1977), 203–204.
  • T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math., 36 (1976), 173–207.
  • T. A. Springer, A construction of representations of Weyl groups, Invent. Math., 44 (1978), 279–293.
  • R. Steinberg, On the desingularization of the unipotent variety, Invent. Math., 36 (1976), 209–224.
  • J. A. Vargas, Fixed points under the action of unipotent elements of $\mathrm{SL}_n$ in the flag variety, Bol. Soc. Mat. Mexicana (2), 24 (1979), 1–14.
  • È. B. Vinberg, Complexity of actions of reductive groups, Funktsional. Anal. i Prilozhen., 20 (1986), 1–13. In Russian; English translation in Funct. Anal. Appl., 20 (1986), 1–11.