Journal of the Mathematical Society of Japan

Resolvent estimates in amalgam spaces and asymptotic expansions for Schrödinger equations

Artbazar GALTBAYAR and Kenji YAJIMA

Full-text: Open access

Abstract

We consider Schrödinger equations $i\partial_t u = (-\Delta + V)u$ in ${\mathbb R}^3$ with a real potential $V$ such that, for an integer $k\geq 0$, $\langle x \rangle^k V(x)$ belongs to an amalgam space $\ell^p(L^q)$ for some $1\leq p$ < 3/2 < $q \leq \infty$, where $\langle x \rangle=(1+|x|^2)^{1/2}$. Let $H = -\Delta + V$ and let $P_{ac}$ be the projector onto the absolutely continuous subspace of $L^2({\mathbb R}^3)$ for $H$. Assuming that zero is not an eigenvalue nor a resonance of $H$, we show that solutions $u(t) = \exp(-itH)P_{ac}\varphi$ admit asymptotic expansions as $t \to \infty$ of the form

$$\bigg\| \langle x \rangle^{-k-\varepsilon} \bigg( u(t)- \sum_{j=0}^{[k/2]}t^{-\frac32-j}P_j \varphi \bigg) \bigg\|_{\infty} \leq C |t|^{-\frac{k+3+\varepsilon}2} \big\| \langle x \rangle^{k+\varepsilon}\varphi \big\|_1$$

for 0 < $\varepsilon$ < $3(1/p-2/3)$, where $P_0, \dots, P_{[k/2]}$ are operators of finite rank and $[k/2]$ is the integral part of $k/2$. The proof is based upon estimates of boundary values on the reals of the resolvent $(-\Delta -\lambda^2)^{-1}$ as an operator-valued function between certain weighted amalgam spaces.

Article information

Source
J. Math. Soc. Japan, Volume 65, Number 2 (2013), 563-605.

Dates
First available in Project Euclid: 25 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1366896644

Digital Object Identifier
doi:10.2969/jmsj/06520563

Mathematical Reviews number (MathSciNet)
MR3055596

Zentralblatt MATH identifier
1284.35361

Subjects
Primary: 35Q41: Time-dependent Schrödinger equations, Dirac equations

Keywords
Schrödinger equation asymptotic expansions resolvent estimates

Citation

GALTBAYAR, Artbazar; YAJIMA, Kenji. Resolvent estimates in amalgam spaces and asymptotic expansions for Schrödinger equations. J. Math. Soc. Japan 65 (2013), no. 2, 563--605. doi:10.2969/jmsj/06520563. https://projecteuclid.org/euclid.jmsj/1366896644


Export citation

References

  • S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 151–218.
  • J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
  • M. B. Erdoğan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three. I, Dyn. Partial Differ. Equ., 1 (2004), 359–379.
  • M. B. Erdoğan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three. II, J. Anal. Math., 99 (2006), 199–248.
  • M. B. Erdoğan, M. Goldberg and W. Schlag, Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions, Forum Math., 21 (2009), 687–722.
  • A. Galtbayar, A. Jensen and K. Yajima, Local time-decay of solutions to Schrödinger equation with time-periodic potentials, J. Statist. Phys., 116 (2004), 231–282.
  • M. Goldberg, Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials, Geom. Funct. Anal., 16 (2006), 517–536.
  • M. Goldberg and W. Schlag, Dispersive estimates for Schrödinger operators in dimension one and three, Comm. Math. Phys., 251 (2004), 157–178.
  • M. Goldberg and W. Schlag, A limiting absorption principle for the three-dimensional Schrödinger equation with $L^p$ potentials, Int. Math. Res. Not., 2004 (2004), 4049–4071.
  • A. D. Ionescu and D. Jerison, On the absence of positive eigenvalues of Schrödinger operators with rough potentials, Geom. and Funct. Anal., 13 (2003), 1029–1081.
  • A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583–611.
  • J.-L. Journé, A. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573–604.
  • C. E. Kenig, A. Ruiz and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., 55 (1987), 329–347.
  • E. H. Lieb and M. Loss, Analysis, Grad. Stud. Math., 14, Amer. Math. Soc., Providence, RI, 2001.
  • H. Mizutani, Dispersive estimates and asymptotic expansions for Schrödinger equations in dimension one, J. Math. Soc. Japan, 63 (2011), 239–261.
  • M. Murata, Asymptotic expansions in time for solutions of Schrödinger-type equations, J. Funct. Anal., 49 (1982), 10–56.
  • J. Rauch, Local decay of scattering solutions to Schrödinger's equation, Comm. Math. Phys., 61 (1978), 149–168.
  • I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155 (2004), 451–513.
  • E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc., 83 (1956), 482–492.
  • E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc., 87 (1958), 159–172.
  • K. Yajima, The $W^{k,p}$-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan, 47 (1995), 551–581.
  • K. Yajima, Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue, Comm. Math. Phys., 259 (2005), 475–509.