Journal of the Mathematical Society of Japan

Classification of plane curves with infinitely many Galois points


Full-text: Open access


For a plane curve, a point in the projective plane is said to be Galois when the point projection induces a Galois extension of function fields. We completely classify plane curves with infinitely many outer Galois points.

Article information

J. Math. Soc. Japan, Volume 63, Number 1 (2011), 195-209.

First available in Project Euclid: 27 January 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14H50: Plane and space curves
Secondary: 12F10: Separable extensions, Galois theory

Galois point positive characteristic plane curve


FUKASAWA, Satoru. Classification of plane curves with infinitely many Galois points. J. Math. Soc. Japan 63 (2011), no. 1, 195--209. doi:10.2969/jmsj/06310195.

Export citation


  • V. Bayer and A. Hefez, Strange curves, Comm. Algebra, 19 (1991), 3041–3059.
  • S. Fukasawa, On the number of Galois points for a plane curve in positive characteristic, II, Geom. Dedicata, 127 (2007), 131–137.
  • S. Fukasawa and T. Hasegawa, Singular plane curves with infinitely many Galois points, J. Algebra, 323 (2010), 10–13.
  • D. Goss, Basic Structures of Function Field Arithmetic, Springer, Berlin, 1996.
  • A. Hefez, Non-reflexive curves, Compositio Math., 69 (1989), 3–35.
  • A. Hefez and S. Kleiman, Notes on the duality of projective varieties, “Geometry Today”, Prog. Math., 60, Birkhäuser, Boston, 1985, pp.,143–183.
  • M. Homma, Galois points for a Hermitian curve, Comm. Algebra, 34 (2006), 4503–4511.
  • H. Kaji, Characterization of space curves with inseparable Gauss maps in extremal cases, Arch. Math., 58 (1992), 539–546.
  • S. Kleiman, Tangency and duality, In Proceedings 1984 Vancouver Conference in Algebraic Geometry, CMS Conf. Proc. 6, Amer. Math. Soc., 1986, pp.,163–226.
  • E. Lluis, Variedades algebraicas con ciertas condiciones en sus tangents, Bol. Soc. Math. Mex., 7 (1962), 47–56.
  • H. Matsuyama, Solvability of groups of order $2^ap^b$, Osaka J. Math., 10 (1973), 375–378.
  • K. Miura, Galois points on singular plane quartic curves, J. Algebra, 287 (2005), 283–293.
  • K. Miura and H. Yoshihara, Field theory for function fields of plane quartic curves, J. Algebra, 226 (2000), 283–294.
  • R. Pardini, Some remarks on plane curves over fields of finite characteristic, Compositio Math., 60 (1986), 3–17.
  • P. Roquette, Abschätzung der Automorphismenanzahl von Funktionenkörpern bei Primzahlcharakteristik, Math. Z., 117 (1970), 157–163.
  • P. Samuel, Lectures on Old and New Results on Algebraic Curves, Tata Institute of Fundamental Research, Bombay, 1966.
  • H. L. Schmid, Über die Automorphismen eines algebraischen Funktionenkörpers von Primzahlcharakteristik, J. Reine Angew. Math., 179 (1938), 5–15.
  • J. H. Silverman, The Arithmetic of Elliptic Curves, GTM 106, Springer-Verlag, New York, 1986.
  • H. Stichtenoth, Algebraic Function Fields and Codes, Universitext, Springer-Verlag, Berlin, 1993.
  • K. O. Stöhr and J. F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. (3), 52 (1986), 1–19.
  • M. Suzuki, Group Theory I, Grundlehren der Mathematischen Wissenschaften 247, Springer-Verlag, Berlin-New York, 1982.
  • H. Yoshihara, Function field theory of plane curves by dual curves, J. Algebra, 239 (2001), 340–355.
  • H. Yoshihara, Galois points for plane rational curves, Far east J. Math. Sci., 25 (2007), 273–284.
  • H. Yoshihara, Rational curve with Galois point and extendable Galois automorphism, J. Algebra, 321 (2009), 1463–1472.