Journal of the Mathematical Society of Japan

The reproducing formula with fractional orders on the parabolic Bloch space

Yôsuke HISHIKAWA

Full-text: Open access

Abstract

In this paper, we study the reproducing formula with fractional orders on the parabolic Bloch space. As an application of the reproducing formula, we characterize the dual and pre-dual spaces of parabolic Bergman spaces. Furthermore, we generalize the integral pairing, which gives the duality between the parabolic Bloch space and the parabolic Bergman space.

Article information

Source
J. Math. Soc. Japan, Volume 62, Number 4 (2010), 1219-1255.

Dates
First available in Project Euclid: 2 November 2010

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1288703103

Digital Object Identifier
doi:10.2969/jmsj/06241219

Mathematical Reviews number (MathSciNet)
MR2761895

Zentralblatt MATH identifier
1213.35399

Subjects
Primary: 35K05: Heat equation
Secondary: 26A33: Fractional derivatives and integrals 26D10: Inequalities involving derivatives and differential and integral operators

Keywords
parabolic operator of fractional order Bloch space reproducing formula

Citation

HISHIKAWA, Yôsuke. The reproducing formula with fractional orders on the parabolic Bloch space. J. Math. Soc. Japan 62 (2010), no. 4, 1219--1255. doi:10.2969/jmsj/06241219. https://projecteuclid.org/euclid.jmsj/1288703103


Export citation

References

  • Y. Hishikawa, Fractional calculus on parabolic Bergman spaces, Hiroshima Math. J., 38 (2008), 471–488.
  • Y. Hishikawa, M. Nishio and M. Yamada, A conjugate system and tangential derivative norms on parabolic Bergman spaces, Hokkaido Math. J., 39 (2010), 85–114.
  • M. Nishio, N. Suzuki and M. Yamada, Toeplitz operators and Carleson measures on parabolic Bergman spaces, Hokkaido Math. J., 36 (2007), 567–587.
  • M. Nishio, K. Shimomura and N. Suzuki, $\alpha$-parabolic Bergman spaces, Osaka J. Math., 42 (2005), 133–162.
  • W. Ramey and H. Yi, Harmonic Bergman functions on half-spaces, Trans. Amer. Math. Soc., 348 (1996), 633–660.
  • M. Yamada, Harmonic conjugates of parabolic Bergman functions, Advanced Studies Pure Math., 44 (2006), 391–402.