Journal of the Mathematical Society of Japan

Invariant subspaces and reducing subspaces of weighted Bergman space over bidisk

Yufeng LU and Xiaoyang ZHOU

Full-text: Open access

Abstract

In this paper, we study the invariant subspace and reducing subspace of the weighted Bergman space over bidisk. The minimal reducing subspace of Toeplitz operator T z N = T z 1 N z 2 N is completely described, and Beurling-type theorem of some invariant subspace of the weighted Bergman space over bidisk is also obtained.

Article information

Source
J. Math. Soc. Japan, Volume 62, Number 3 (2010), 745-765.

Dates
First available in Project Euclid: 30 July 2010

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1280496818

Digital Object Identifier
doi:10.2969/jmsj/06230745

Mathematical Reviews number (MathSciNet)
MR2648061

Zentralblatt MATH identifier
1202.47008

Subjects
Primary: 47A15: Invariant subspaces [See also 47A46] 32A35: Hp-spaces, Nevanlinna spaces [See also 32M15, 42B30, 43A85, 46J15]

Keywords
weighted Bergman space bidisk invariant subspace reducing subspace

Citation

LU, Yufeng; ZHOU, Xiaoyang. Invariant subspaces and reducing subspaces of weighted Bergman space over bidisk. J. Math. Soc. Japan 62 (2010), no. 3, 745--765. doi:10.2969/jmsj/06230745. https://projecteuclid.org/euclid.jmsj/1280496818


Export citation

References

  • A. Aleman, S. Richter and C. Sundberg, Beurling's theorem for the Bergman space, Acta. Math., 177 (1996), 275–310.
  • K. Guo, S. Sun, D. Zheng and C. Zhong, Multiplication operators on the Bergman space via the Hardy space of the bidisk, to appear in J. Reine Angew. Math.
  • H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman Spaces, Spring-Verlag, New York, 2000.
  • H. Hedenmalm, S. Richter and K. Seip, Interpolating sequences and invariant subspaces of given index in the Bergman spaces, J. Reine Angew. Math., 477 (1996), 13–30.
  • T. Lance and M. Stessin, Multiplication invariant subspace in Hardy space, Canadian J. Math., 49 (1997), 100–118.
  • W. Rudin, Function Theory in Polydiscs, W. A. Benjamin, INC. New York, 1969.
  • M. Stessin and K. Zhu, Reducing subspaces of weighted shift operators, Proceedings of Amer. Math. Soc. (9), 130 (2002), 2631–2639.
  • S. Sun, D. Zheng and C. Zhong, Classification of reducing subspaces of a class of multiplication operators on the Bergman space via the Hardy space of the bidisk, to appear in Canadian J. Math.
  • K. Zhu, Operator Theory in Function Spaces, Monogr. Textbooks Pure Appl. Math., 139, Marcel Dekker Inc., New York, 1990.
  • K. Zhu, Reducing subspaces for a class of multiplication operator, J. London Math. Soc. (2), 62 (2000), 553–568.