Journal of the Mathematical Society of Japan

Transfinite large inductive dimensions modulo absolute Borel classes

Vitalij A. CHATYRKO and Yasunao HATTORI

Full-text: Open access


The following inequalities between transfinite large inductive dimensions modulo absolutely additive (resp. multiplicative) Borel classes $A(\alpha)$ (resp. $M(\alpha))$ = \begin{equation*} (i) \; \; \; A(0) \mathsf{-trInd} \geq M(0) \mathsf{-trInd} \geq max\{A(1) \mathsf{-trInd}, M(1) \mathsf{-trInd}\}, and \\ (ii) \; \; \; min \{A(\alpha) \mathsf{-trInd},M(\alpha) \mathsf{-trInd}\} \geq max \{A(\beta) \mathsf{-trInd},M(\beta) \mathsf{-trInd}\}, \\ \mathsf{where \;} 1 \leq \alpha "< \beta < \omega_1. \end{equation*} We show that for any two functions $a$ and $m$ from the set of ordinals $\Omega = \{ \alpha : \alpha < \omega_1 \}$ to the set $\{ -1 \} \cup \Omega \cup \{ \infty \}$ such that

\begin{equation*} (i) \; \; \; a(0) \geq m(0) \geq max\{a(1),m(1)\}, \mathsf{and}\\ (ii) \; \; \; min \{a(\alpha),m(\alpha) \} \geq max \{ a(\beta),m(\beta)\}, \mathsf{whenever \;} 1 \geq \alpha < \beta < \omega_1, \end{equation*} there is a separable metrizable space X such that $A(\alpha) \mathsf{-trInd}X = a(/alpha)$ and $M(\alpha) \mathsf{-trInd}X = m(\alpha)$ for each $0 \geq \alpha < \omega_1$.

Article information

J. Math. Soc. Japan, Volume 61, Number 2 (2009), 327-344.

First available in Project Euclid: 13 May 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 54F45: Dimension theory [See also 55M10]
Secondary: 04A15 54D35: Extensions of spaces (compactifications, supercompactifications, completions, etc.) 54H05: Descriptive set theory (topological aspects of Borel, analytic, projective, etc. sets) [See also 03E15, 26A21, 28A05]

inductive dimensions modulo $mathcal{P}$ absolute Borel class absolutely multipricative Borel class absolutely additive Borel class separable metrizable space


CHATYRKO, Vitalij A.; HATTORI, Yasunao. Transfinite large inductive dimensions modulo absolute Borel classes. J. Math. Soc. Japan 61 (2009), no. 2, 327--344. doi:10.2969/jmsj/06120327.

Export citation


  • J. M. Aarts, Completeness degree, A generalization of dimension, Fund. Math., 63 (1968), 27–41.
  • J. M. Aarts and T. Nishiura, Dimension and Extensions, North-Holland, Amsterdam, 1993.
  • M. G. Charalambous, On transfinite inductive dimension and deficiency modulo a class $\mathcal{P}$, Top. Appl., 81 (1997), 123–135.
  • V. Chatyrko and Y. Hattori, Infinite-dimensionality modulo absolute Borel classes, Bull. Polish Acad. Sci. Math., 56 (2008), 163–176.
  • R. Engelking, Theory of dimensions, finite and infinite, Heldermann Verlag, Lemgo, 1995.
  • A. Lelek, Dimension and mappings of spaces with finite deficiency, Colloq. Math., 12 (1964), 221–227.
  • B. T. Levshenko, Spaces of transfinite dimension (Russian), Mat. Sb., 67 (1965), 225–266, English translation: Amer. Math. Soc. Transl. Ser. 2, 73 (1968), 135–148.
  • E. Pol, The Baire category method in some compact extension problems, Pacific J. Math., 122 (1986), 197–210.
  • R. Pol, On transfinite inductive compactness degree, Colloq. Math., 53 (1987), 57–61.
  • Ju. M. Smirnov, On universal spaces for certain classes of infinite-dimensional spaces, Izvest. Akad. Nauk SSSR Ser. Mat., 23 (1959), 185–196, English translation: Amer. Math. Soc. Transl. Ser. 2, 21 (1962), 35–50.
  • S. M. Srivastava, A Course on Borel Sets, Springer Verlag, New York, 1998.
  • L. R. Rubin, R. M. Schori and J. J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, General Topology Appl., 10 (1979), 93–102.