Journal of the Mathematical Society of Japan

Lifting to mod 2 Moore spaces

Kaoru MORISUGI and Juno MUKAI

Full-text: Open access

Abstract

We try to investigate whether an element of order 2 in homotopy groups of spheres has a lift to an element of homotopy groups of mod 2 Moore spaces or not. A typical element of the affirmative property is Thomeier's element of π8n+7(S4n+3). And the Whitehead square [l2n+1,l2n+1] of the identity class l2n+1 of S2n+1 is a negative example except for n=0,1 and 3.

Article information

Source
J. Math. Soc. Japan, Volume 52, Number 3 (2000), 515-533.

Dates
First available in Project Euclid: 10 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1213107284

Digital Object Identifier
doi:10.2969/jmsj/05230515

Mathematical Reviews number (MathSciNet)
MR1760602

Zentralblatt MATH identifier
0960.55006

Subjects
Primary: 55Q52: Homotopy groups of special spaces
Secondary: 55Q40: Homotopy groups of spheres 55Q15: Whitehead products and generalizations

Keywords
Lift mod 2 Moore space Whitehead product

Citation

MORISUGI, Kaoru; MUKAI, Juno. Lifting to mod $2$ Moore spaces. J. Math. Soc. Japan 52 (2000), no. 3, 515--533. doi:10.2969/jmsj/05230515. https://projecteuclid.org/euclid.jmsj/1213107284


Export citation