Journal of the Mathematical Society of Japan

Fourier integral representation of harmonic functions in terms of a current

Hideshi YAMANE

Full-text: Open access

Abstract

We give a Fourier integral representation of harmonic functions in three variables in terms of the current of integration over {z12+z22+z32=0}C3.

Article information

Source
J. Math. Soc. Japan, Volume 54, Number 4 (2002), 901-909.

Dates
First available in Project Euclid: 5 October 2007

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1191591996

Digital Object Identifier
doi:10.2969/jmsj/1191591996

Mathematical Reviews number (MathSciNet)
MR1921091

Zentralblatt MATH identifier
1044.31001

Subjects
Primary: 32C30: Integration on analytic sets and spaces, currents {For local theory, see 32A25 or 32A27}
Secondary: 31A05: Harmonic, subharmonic, superharmonic functions 31A25: Boundary value and inverse problems

Keywords
current the fundamental principle the Poisson integral

Citation

YAMANE, Hideshi. Fourier integral representation of harmonic functions in terms of a current. J. Math. Soc. Japan 54 (2002), no. 4, 901--909. doi:10.2969/jmsj/1191591996. https://projecteuclid.org/euclid.jmsj/1191591996


Export citation