Journal of the Mathematical Society of Japan

Dirichlet problem for evolutionary surfaces of prescribed mean curvature in a non-convex domain

Kazuya HAYASIDA and Yoshiaki IKEDA

Full-text: Open access

Abstract

We show the existence of solutions for Dirichlet problem of evolutionary surfaces of prescribed mean curvature. Usually the lateral boundary needs to satisfy a kind of convexity, more precisely H-convexity condition. But in this article we do not assume it on a portion S of the lateral boundary. Under some assumptions on the exterior forces and the shape of S we prove that the solution satisfies Dirichlet boundary condition on S in a weak sense.

Article information

Source
J. Math. Soc. Japan, Volume 56, Number 4 (2004), 1169-1201.

Dates
First available in Project Euclid: 27 September 2007

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1190905454

Digital Object Identifier
doi:10.2969/jmsj/1190905454

Mathematical Reviews number (MathSciNet)
MR2092943

Zentralblatt MATH identifier
1063.35078

Subjects
Primary: 35K55: Nonlinear parabolic equations
Secondary: 35K20: Initial-boundary value problems for second-order parabolic equations

Keywords
Dirichlet problem evolutionary surfaces of prescribed mean curvature boundary mean curvature

Citation

HAYASIDA, Kazuya; IKEDA, Yoshiaki. Dirichlet problem for evolutionary surfaces of prescribed mean curvature in a non-convex domain. J. Math. Soc. Japan 56 (2004), no. 4, 1169--1201. doi:10.2969/jmsj/1190905454. https://projecteuclid.org/euclid.jmsj/1190905454


Export citation