Journal of the Mathematical Society of Japan

On harmonic function spaces


Full-text: Open access


In this paper we investigate a -Bloch, Hardy, Bergman, B M O p and Dirichlet spaces of harmonic functions on the open unit ball in R n , and the boundedness of the Hardy-Littlewood operator on these spaces.

Article information

J. Math. Soc. Japan, Volume 57, Number 3 (2005), 781-802.

First available in Project Euclid: 14 September 2006

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 31B05: Harmonic, subharmonic, superharmonic functions

harmonic function weighted Hardy-Littlewood operator Dirichlet type space boundedness Bloch space


STEVIĆ, Stevo. On harmonic function spaces. J. Math. Soc. Japan 57 (2005), no. 3, 781--802. doi:10.2969/jmsj/1158241935.

Export citation


  • A. Aleman and A. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J., 46 (1997), 337–356.
  • S. Axler, The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J., 53 (1986), 315–332.
  • S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, Springer-Verlag, New York, 1992.
  • R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several complex variables, Ann. of Math., 103 (1976), 611–635.
  • P. L. Duren, Theory of $H^p$ spaces, Academic Press, New York, 1970.
  • C. Fefferman and E. M. Stein, $H^p$ spaces of several variables, Acta Math., 129 (1972), 137–193.
  • T. M. Flett, Inequalities for the $p$th mean values of harmonic and subharmonic functions with $p\leq1$, Proc. London Math. Soc. (3), 20 (1970), 249–275.
  • D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1977.
  • Y. Gotoh, On $BMO$ functions on Riemann surface, J. Math. Kyoto Univ., 25 (1985), 331–339.
  • G. H. Hardy and J. E. Littlewood, Some properties of conjugate function, J. Reine Angew. Math., 167 (1931), 405–423.
  • W. Hayman, Multivalent functions, Cambridge Univ. Press, London, 1958.
  • W. Hayman and P. B. Kennedy, Subharmonic functions, volume I, Academic Press, London, New York, San Francisco, 1976.
  • Hu, Zhangjian, Estimates for the integral mean of harmonic functions on bounded domains in $\bm{R}^n$, Sci. China Ser. A, 38 (1995), 36–46.
  • T. L. Kriete and B. D. MacCluer, Composition operators on large weighted Bergman spaces, Indiana Univ. Math. J., 41 (1992), 755–788.
  • P. Lin and R. Rochberg, Hankel operators on the weighted Bergman spaces with exponential weights, Integral Equations Operator Theory, 21 (1995), 460–483.
  • D. Luecking, Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math., 107 (1985), 85–111.
  • D. Luecking, A new proof of an inequality of Littlewood and Paley, Proc. Amer. Math. Soc., 103 (1988), 887–893.
  • K. Muramoto, Harmonic Bloch and BMO functions on the unit ball in several variables, Tokyo J. Math., 11 (1988), 381–386.
  • A. Siskakis, Weighted integrals of analytic functions, Acta Sci. Math., 66 (2000), 651–664.
  • S. Stević, An equivalent norm on BMO spaces, Acta Sci. Math., 66 (2000), 553–563.
  • S. Stević, On eigenfunctions of the Laplace operator on a bounded domain, Sci. Ser. A Math. Sci. (N.S.), 7 (2001), 51–55.
  • S. Stević, A note on weighted integrals of analytic functions, Bull. Greek Math. Soc., 46 (2002), 3–9.
  • S. Stević, On an area inequality and weighted integrals of analytic functions, Result. Math., 41 (2002), 386–393.
  • S. Stević, On harmonic Hardy and Bergman spaces, J. Math. Soc. Japan, 54 (2002), 983–996.
  • S. Stević, On Bloch hyperharmonic functions, Ann. Math. Silesianae, 16 (2002), 57–64.
  • S. Stević, Weighted integrals of harmonic functions, Studia Sci. Math. Hung., 39 (2002), 87–96.
  • S. Stević, Weighted integrals of holomorphic functions in $\bm{C}^n$, Complex Variables, 47 (2002), 821–838.
  • S. Stević, Composition operators on the generalized Bergman space, J. Indian Math. Soc., 69 (2002), 61–64.
  • S. Stević, Inequalities for the gradient of eigenfunctions of the Laplace-Beltrami operator, Functiones et Approximatio, 31 (2003), 7–19.
  • S. Stević, On harmonic Hardy spaces and area integrals, J. Math. Soc. Japan, 56 (2004), 339–347.
  • S. Stević, On subharmonic behaviour of functions on balls in $\bm{C}^n$, Archives of Inequalities and Applications (to appear).
  • M. Stoll, A characterization of Hardy spaces on the unit ball of $\bm{C}^n$, J. London Math. Soc., 48 (1993), 126–136.
  • R. M. Timoney, Bloch functions in several complex variables, I, Bull. London Math. Soc., 12 (1980), 241–267.
  • S. Yamashita, Criteria for functions to be of Hardy class $H^p$, Proc. Amer. Math. Soc., 75 (1979), 69–72.
  • S. Yamashita, Dirichlet-finite functions and harmonic majorants, Illinois J. Math., 25 (1981), 626–631.
  • S. Yamashita, Holomorphic functions and area integrals, Bollettino. U.,M.,I., 6 (1982), 115–120.