Journal of the Mathematical Society of Japan

Hodge cycles on abelian varieties associated to the complete binary trees

Fumio HAZAWA

Full-text: Open access

Abstract

The structure of the ring of Hodge cycles on a certain family of abelian varieties of CM-type is investigated. This leads to an interesting combinatorial problem related to posets based on complete p-ary trees. A complete solution to the problem is given for the case p=2.

Article information

Source
J. Math. Soc. Japan, Volume 58, Number 1 (2006), 55-82.

Dates
First available in Project Euclid: 17 April 2006

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1145287093

Digital Object Identifier
doi:10.2969/jmsj/1145287093

Mathematical Reviews number (MathSciNet)
MR2204565

Zentralblatt MATH identifier
1117.14013

Subjects
Primary: 14C30: Transcendental methods, Hodge theory [See also 14D07, 32G20, 32J25, 32S35], Hodge conjecture 11G10: Abelian varieties of dimension > 1 [See also 14Kxx] 06A11: Algebraic aspects of posets

Keywords
Hodge cycle abelian variety binary tree

Citation

HAZAWA, Fumio. Hodge cycles on abelian varieties associated to the complete binary trees. J. Math. Soc. Japan 58 (2006), no. 1, 55--82. doi:10.2969/jmsj/1145287093. https://projecteuclid.org/euclid.jmsj/1145287093


Export citation

References

  • F. Hazama, Hodge cycles on abelian varieties of $S_n$-type, J. Algebraic Geom., 9 (2000), 711–753.
  • F. Hazama, On the kernels of the lowering operators for ranked posets, Far East J. Math. Sci., 3 (2001), 513–541.
  • F. Hazama, Hodge cycles on abelian varieties with complex multiplication by cyclic CM-fields, J. Math. Sci. Univ. Tokyo, 10 (2003), 581–598.
  • K. A. Ribet, Division fields of abelian varieties with complex multiplication, Mém. Soc. Math. Fr. (N.S.), 2 (1980), 75–94.
  • S. P. White, Sporadic cycles on CM abelian varieties, Compositio Math., 88 (1993), 123–142.