Journal of Integral Equations and Applications

The factorization method for a conductive boundary condition

Andreas Kirsch and Andreas Kleefeld

Full-text: Open access

Article information

J. Integral Equations Applications, Volume 24, Number 4 (2012), 575-601.

First available in Project Euclid: 7 March 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Kirsch, Andreas; Kleefeld, Andreas. The factorization method for a conductive boundary condition. J. Integral Equations Applications 24 (2012), no. 4, 575--601. doi:10.1216/JIE-2012-24-4-575.

Export citation


  • K.E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge University Press, Cambridge, 1997.
  • K.E. Atkinson and G. Chandler, The collocation method for solving the radiosity equation for unoccluded surfaces, J. Integral Equations Appl. 10 (1998), 253-290.
  • K.E. Atkinson, I. Graham and I. Sloan, Piecewise continuous collocation for integral equations, SIAM J. Numer. Anal. 20 (1983), 172-186.
  • D. Colton and R. Kress, Integral equation methods in scattering theory, John Wiley & Sons, New York, 1983.
  • –––, Inverse acoustic and electromagnetic scattering theory, Second ed., Springer-Verlag, New York, 1998.
  • T. Gerlach and R. Kress, Uniqueness in inverse obstacle scattering with conductive boundary condition, Inverse Problems 12 (1996), 619-625.
  • D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer, New York, 1983.
  • W. Hackbusch, Integral equations-Theory and numerical treatment, Birkhäuser, Berlin, 1995.
  • F. Hettlich, On the uniqueness of the inverse conductive scattering problem for the Helmholtz equation, Inverse Problems 10 (1994), 129-144.
  • A. Kirsch, An introduction to the mathematical theory of inverse problems, Springer, New York, 1996.
  • A. Kirsch and N. Grinberg, The factorization method for inverse problems, Oxford University Press, Oxford, 2008.
  • A. Kirsch and S. Ritter, A linear sampling method for inverse scattering from an open arc, Inverse Problems 16 (2000), 89-105.
  • A. Kleefeld, Direct and inverse acoustic scattering for three-dimensional surfaces, Ph.D. thesis, University of Wisconsin, Milwaukee, 2009.
  • A. Kleefeld and T.-C. Lin, Boundary element collocation method for solving the exterior Neumann problem for Helmholtz's equation in three dimensions, Electron. Trans. Numer. Anal. 39 (2012), 113-143.
  • –––, Boundary element collocation method for solving the exterior Robin problem for Helmholtz's equation in three dimensions, submitted.
  • W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000.
  • A. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, Englewood Cliffs, New York, 1971. \noindentstyle