## Journal of Generalized Lie Theory and Applications

- J. Gen. Lie Theory Appl.
- Volume 10, Number 1 (2016), 5 pages.

### How to Prove the Riemann Hypothesis

#### Abstract

The aim of this paper is to prove the celebrated Riemann Hypothesis. I have already discovered a simple proof of the Riemann Hypothesis. The hypothesis states that the nontrivial zeros of the Riemann zeta function have real part equal to 0.5. I assume that any such zero is s=a+bi. I use integral calculus in the first part of the proof. In the second part I employ variational calculus. Through equations (50) to (59) I consider (a) as a fixed exponent, and verify that a=0.5. From equation (60) onward I view (a) as a parameter (a <0.5) and arrive at a contradiction. At the end of the proof (from equation (73)) and through the assumption that (a) is a parameter, I verify again that a=0.5.

#### Article information

**Source**

J. Gen. Lie Theory Appl., Volume 10, Number 1 (2016), 5 pages.

**Dates**

First available in Project Euclid: 3 February 2017

**Permanent link to this document**

https://projecteuclid.org/euclid.jglta/1486090829

**Digital Object Identifier**

doi:10.4172/1736-4337.1000250

**Zentralblatt MATH identifier**

1256.11047

**Keywords**

Definite integral Indefinite integral Variational calculus

#### Citation

Al Adeh, Fayez Fok. How to Prove the Riemann Hypothesis. J. Gen. Lie Theory Appl. 10 (2016), no. 1, 5 pages. doi:10.4172/1736-4337.1000250. https://projecteuclid.org/euclid.jglta/1486090829