Journal of Generalized Lie Theory and Applications

Deforming $\mathcal{K}(1) $ superalgebra modules of symbols

Faouzi AMMAR and Kaouthar KAMOUN

Full-text: Open access


We study nontrivial deformations of the natural action of the Lie superalgebra $\mathcal{K}(1)$ of contact vector fields on the $(1,1)$-dimensional superspace $\mathbb{R}^{1|1}$ on the space of symbols $\widetilde{{\mathcal{S}}}_\delta^n=\bigoplus_{k=0}^n{\mathfrak{F}}_{\delta-\frac{k}{2}}$. We calculate obstructions for integrability of infinitesimal multiparameter deformations and determine the complete local commutative algebra corresponding to the miniversal deformation.

Article information

J. Gen. Lie Theory Appl., Volume 3, Number 2 (2009), Article ID S090202, 95-111.

First available in Project Euclid: 7 October 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


AMMAR, Faouzi; KAMOUN, Kaouthar. Deforming $\mathcal{K}(1) $ superalgebra modules of symbols. J. Gen. Lie Theory Appl. 3 (2009), no. 2, Article ID S090202, 95--111. doi:10.4303/jglta/S090202.

Export citation


  • A. Fialowski. An example of formal deformations of Lie algebras. In “Proceedings of NATO Conference on Deformation Theory of Algebras and Applications (Il Ciocco, Italy, 1986)”. Kluwer, Dordrecht, 1988, 375–401.
  • A. Fialowski and D. B. Fuchs. Construction of miniversal deformations of Lie algebras. J. Func. Anal. 161 (1999), 76–110.
  • A. Fialowski. Deformations of Lie algebras. Mat. Sbornyik USSR, 127 (169), (1985), 476–482; English translation: Math. USSR-Sb. 55 (1986), 467–473.
  • A. Nijenhuis and R. W. Richardson. Deformations of homomorphisms of Lie groups and Lie algebras. Bull. Amer. Math. Soc. 73 (1967), 175–179.
  • B. Agrebaoui, F. Ammar, P. Lecomte, and V. Ovsienko. Multi-parameter deformations of the module of symbols of differential operators. Int. Math. Res. Notices. 16 (2002), 847–869.
  • B. Agrebaoui, N. B. Fraj, M. B. Ammar, and V. Ovsienko. Deformations of modules of differential forms. Nonlinear Math. Phys. 10 (2003), 148-156.
  • M. Ben Ammar and M. Boujelbene. $\mathfrak{sl}(2)$-trivial deformations of ${\rm Vect}\sb {\rm Pol}(\mathbb{R})$-modules of symbols. SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 065, 19.
  • I. Basdouri and M. Ben Ammar. Cohomology of $\mathfrak{osp}(1|2)$ acting on Linear Differential Operators on the supercercle $S^{1|1}$. Lett. Math. Phys. 81 (2007), 239–251.
  • I. Basdouri, M. Ben Ammar, N. Ben Fraj, M. Boujelben, and K. Kamoun. Cohomology of the Lie superalgebra of contact vector fields on $\mathbb{R}^{1|1}$ and deformations of the superspace of symbols. Preprint arXiv:math/0702645v1.
  • D. B. Fuchs. Cohomology of infinite-dimensional Lie algebras. Plenum Publ., New York, 1986.
  • F. Gieres and S. Theisen. Superconformally covariant operators and super $W$-algebras. J. Math. Phys. 34 (1993), 5964–5985.
  • H. Gargoubi and V. Ovsienko. Supertransvectants and symplectic geometry. Int. Math. Res. Not. IMRN. 2008 (2008), article ID rnn021, 19 pages.
  • L. Guieu and C. Roger. L'algèbre et le groupe de Virasoro. Publication of CRM, Montréal, 2007, ISBN 2-921120-44-5.
  • R. W. Richardson. Deformations of subalgebras of Lie algebras. J. Diff. Geom. 3 (1969), 289–308.
  • S. Bouarroud and V. Ovsienko. Three cocycles on Diff($S^1$) generalizing the Schwarzsian derivative. Int. Math. Res. Notices 1 (1998), 25–39.
  • V. G. Kac and W. Van De Leur. On classification of superconformal algebras. In “Strings 88”. S. J. Gates, C. R. Preitschopf, and W. Siegel, Eds. World Scientific, Singapore, 1989, 77–106.
  • V. Ovsienko and C. Roger. Deforming the Lie algebra of vector fields on $S^1$ inside the Lie algebra of pseudodifferential operators on $S^1$. AMS Transl. Ser. 2 (Adv. Math. Sci.) 194 (1999), 211–227.
  • V. Ovsienko and C. Roger. Deforming the Lie algebra of vector fields on $S^1$ inside the Poisson algebra on $\dot T^*S^1$. Comm. Math. Phys. 198 (1998) 97–110.
  • W.-J. Huang. Superconformal covariantization of superdifferential operator on $(1|1)$ superspace and classical $N=2W$ superalgebras. J. Math. Phys. 35 (1994), 2570–2582.