## Journal of Differential Geometry

- J. Differential Geom.
- Volume 109, Number 1 (2018), 111-175.

### Nonlocal $s$-minimal surfaces and Lawson cones

Juan Dávila, Manuel del Pino, and Juncheng Wei

#### Abstract

The nonlocal $s$-fractional minimal surface equation for $\Sigma = \partial E$ where $E$ is an open set in $\mathbb{R}^N$ is given by

\[ H_\Sigma^ s (p) := \int_{\mathbb{R}^N} \frac{\chi_E(x) - \chi_{E^c}(x)} {{\lvert x-p \rvert}^{N+s}}\, dx \ =\ 0 \; \textrm{for all} \; p\in\Sigma \textrm{ .} \]

Here $0 \lt s \lt 1 , \chi$ designates characteristic function, and the integral is understood in the principal value sense. The classical notion of minimal surface is recovered by letting $s \to 1$. In this paper we exhibit the first concrete examples (beyond the plane) of nonlocal $s$-minimal surfaces. When $s$ is close to $1$, we first construct a connected embedded $s$-minimal surface of revolution in $\mathbb{R}^3$, the *nonlocal catenoid,* an analog of the standard catenoid $\lvert x_3 \rvert = \log(r+ \sqrt{r^2 - 1})$. Rather than eventual logarithmic growth, this surface becomes asymptotic to the cone $\lvert x_3 \rvert = r \sqrt{1 - s}$. We also find a two-sheet embedded s-minimal surface asymptotic to the same cone, an analog to the simple union of two parallel planes.

On the other hand, for any $0 \lt s \lt 1 , n , m \geq 1$, $s$-minimal Lawson cones $\lvert v \rvert = \alpha \lvert u \rvert, (u, v) \in \mathbb{R}^n \times \mathbb{R}^m$, are found to exist. In sharp contrast with the classical case, we prove their stability for small $s$ and $n + m = 7$, which suggests that unlike the classical theory (or the case $s$ close to $1$), the regularity of $s$-area minimizing surfaces may not hold true in dimension $7$.

#### Article information

**Source**

J. Differential Geom., Volume 109, Number 1 (2018), 111-175.

**Dates**

Received: 9 December 2014

First available in Project Euclid: 4 May 2018

**Permanent link to this document**

https://projecteuclid.org/euclid.jdg/1525399218

**Digital Object Identifier**

doi:10.4310/jdg/1525399218

**Mathematical Reviews number (MathSciNet)**

MR3798717

**Zentralblatt MATH identifier**

06868032

#### Citation

Dávila, Juan; del Pino, Manuel; Wei, Juncheng. Nonlocal $s$-minimal surfaces and Lawson cones. J. Differential Geom. 109 (2018), no. 1, 111--175. doi:10.4310/jdg/1525399218. https://projecteuclid.org/euclid.jdg/1525399218