Journal of Differential Geometry

Green function, Painlevé VI equation, and Eisenstein series of weight one

Zhijie Chen, Ting-Jung Kuo, Chang-Shou Lin, and Chin-Lung Wang

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The behavior and the location of singular points of a solution to Painlevé VI equation could encode important geometric properties. For example, Hitchin’s formula indicates that singular points of algebraic solutions are exactly the zeros of Eisenstein series of weight one. In this paper, we study the problem: How many singular points of a solution $\lambda (t)$ to the Painlevé VI equation with parameter $(\frac{1}{8}, \frac{-1}{8}, \frac{1}{8}, \frac{3}{8})$ might have in $\mathbb{C} \setminus \lbrace 0, 1\rbrace$? Here $t_0 \in \mathbb{C} \setminus \lbrace 0, 1\rbrace$ is called a singular point of $\lambda (t)$ if $\lambda (t_0) \in \lbrace 0, 1, t_0, \infty \rbrace$. Based on Hitchin’s formula, we explore the connection of this problem with Green function and the Eisenstein series of weight one. Among other things, we prove:

(i) There are only three solutions which have no singular points in $\mathbb{C} \setminus \lbrace 0, 1\rbrace$. (ii) For a special type of solutions (called real solutions here), any branch of a solution has at most two singular points (in particular, at most one pole) in $\mathbb{C} \setminus \lbrace 0, 1\rbrace$}. (iii) Any Riccati solution has singular points in $\mathbb{C} \setminus \lbrace 0, 1\rbrace$. (iv) For each $N \geq 5$ and $N \neq 6$, we calculate the number of the real $j$-values of zeros of the Eisenstein series $\mathfrak{E}^N_1 (\tau ; k_1, k_2)$ of weight one, where $(k_1, k_2)$ runs over ${[0, N-1]}^2$ with $\mathrm{gcd}(k_1, k_2, N) = 1$.

The geometry of the critical points of the Green function on a flat torus $E_{\tau}$, as $\tau$ varies in the moduli $\mathcal{M}_1$, plays a fundamental role in our analysis of the Painlevé VI equation. In particular, the conjectures raised in “Elliptic functions, Green functions and the mean field equations on tori” [C.-S. Lin and C.-L. Wang, Annals of Math. 172 (2010), no. 2, 911–954] on the shape of the domain $\Omega_5 \subset \mathcal{M}_1$, which consists of tori whose Green function has extra pair of critical points, are completely solved here.

Article information

J. Differential Geom., Volume 108, Number 2 (2018), 185-241.

Received: 30 September 2015
First available in Project Euclid: 13 February 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Chen, Zhijie; Kuo, Ting-Jung; Lin, Chang-Shou; Wang, Chin-Lung. Green function, Painlevé VI equation, and Eisenstein series of weight one. J. Differential Geom. 108 (2018), no. 2, 185--241. doi:10.4310/jdg/1518490817.

Export citation