Journal of Differential Geometry
- J. Differential Geom.
- Volume 103, Number 3 (2016), 363-376.
Geometry of the intersection ring and vanishing relations in the cohomology of the moduli space of parabolic bundles on a curve
Elisheva Adina Gamse and Jonathan Weitsman
Abstract
We study the ring generated by the Chern classes of tautological line bundles on the moduli space of parabolic bundles of arbitrary rank on a Riemann surface. We show the Poincaré duals to these Chern classes have simple geometric representatives. We use this construction to show that the ring generated by these Chern classes vanishes below the dimension of the moduli space, in analogy with the Newstead–Ramanan conjecture for stable bundles.
Article information
Source
J. Differential Geom., Volume 103, Number 3 (2016), 363-376.
Dates
First available in Project Euclid: 14 July 2016
Permanent link to this document
https://projecteuclid.org/euclid.jdg/1468517499
Digital Object Identifier
doi:10.4310/jdg/1468517499
Mathematical Reviews number (MathSciNet)
MR3523526
Zentralblatt MATH identifier
1351.30032
Citation
Gamse, Elisheva Adina; Weitsman, Jonathan. Geometry of the intersection ring and vanishing relations in the cohomology of the moduli space of parabolic bundles on a curve. J. Differential Geom. 103 (2016), no. 3, 363--376. doi:10.4310/jdg/1468517499. https://projecteuclid.org/euclid.jdg/1468517499