Journal of Differential Geometry

Large isoperimetric surfaces in initial data sets

Michael Eichmair and Jan Metzger

Full-text: Open access

Abstract

We study the isoperimetric structure of asymptotically flat Riemannian 3-manifolds $(M, g)$ that are $\mathcal{C}^0$-asymptotic to Schwarzschild of mass $m \gt 0$. Refining an argument due to H. Bray, we obtain an effective volume comparison theorem in Schwarzschild. We use it to show that isoperimetric regions exist in $(M, g)$ for all sufficiently large volumes, and that they are close to centered coordinate spheres. This implies that the volume-preserving stable constant mean curvature spheres constructed by G. Huisken and S.-T. Yau as well as R. Ye as perturbations of large centered coordinate spheres minimize area among all competing surfaces that enclose the same volume. This confirms a conjecture of H. Bray. Our results are consistent with the uniqueness results for volume-preserving stable constant mean curvature surfaces in initial data sets obtained by G. Huisken and S.-T. Yau and strengthened by J. Qing and G. Tian. The additional hypotheses that the surfaces be spherical and far out in the asymptotic region in their results are not necessary in our work.

Article information

Source
J. Differential Geom., Volume 94, Number 1 (2013), 159-186.

Dates
First available in Project Euclid: 26 February 2013

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1361889064

Digital Object Identifier
doi:10.4310/jdg/1361889064

Mathematical Reviews number (MathSciNet)
MR3031863

Zentralblatt MATH identifier
1269.53071

Citation

Eichmair, Michael; Metzger, Jan. Large isoperimetric surfaces in initial data sets. J. Differential Geom. 94 (2013), no. 1, 159--186. doi:10.4310/jdg/1361889064. https://projecteuclid.org/euclid.jdg/1361889064


Export citation