Journal of Differential Geometry
- J. Differential Geom.
- Volume 45, Number 1 (1997), 33-52.
Gaussian upper bounds for the heat kernel on arbitrary manifolds
Full-text: Open access
Article information
Source
J. Differential Geom., Volume 45, Number 1 (1997), 33-52.
Dates
First available in Project Euclid: 26 June 2008
Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214459753
Digital Object Identifier
doi:10.4310/jdg/1214459753
Mathematical Reviews number (MathSciNet)
MR1443330
Zentralblatt MATH identifier
0865.58042
Subjects
Primary: 58G11
Secondary: 35B45: A priori estimates 35K05: Heat equation
Citation
Grigor\cprimeyan, Alexander. Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Differential Geom. 45 (1997), no. 1, 33--52. doi:10.4310/jdg/1214459753. https://projecteuclid.org/euclid.jdg/1214459753
References
- [1] J-Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Preprint, 1990.Zentralblatt MATH: 0764.43005
Mathematical Reviews (MathSciNet): MR1150587
Digital Object Identifier: doi:10.1215/S0012-7094-92-06511-2
Project Euclid: euclid.dmj/1077295136 - [2] D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (4) 22 (1968) 607-694, Addendum, 25 (1971) 221-228.
- [3] E. A. Carlen, S. Kusuoka and D. W. Stroock, Upper Bounds for symmetric Markov transition functions, Ann. Inst. H. Poincare, Probab. Statist., Suppl. au No.2 (1987) 245-287.
- [4] G. Carron, Inégalités isopérimétriques de Faber-Krahn et conséquences, Actes de la table ronde de geometrie differentielle en l'honneur de Marcel Berger, Collection SMF Seminaires et congres, No. 1, 1994.Zentralblatt MATH: 0884.58088
- [5] I. Chavel and E. Feldman, Modified isoperimetric constants, and large time heat diffusion in Riemannian manifolds, Duke Math. J. 64 (1991) 473-499.Zentralblatt MATH: 0753.58031
Mathematical Reviews (MathSciNet): MR1141283
Digital Object Identifier: doi:10.1215/S0012-7094-91-06425-2
Project Euclid: euclid.dmj/1077295646 - [6] J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982) 15-53.Zentralblatt MATH: 0493.53035
Mathematical Reviews (MathSciNet): MR658471
Project Euclid: euclid.jdg/1214436699 - [7] S. Y. Cheng, P. Li and S.-T. Yau, On the upper estimate of the heat kernel of a complete Riemannian manifold, Amer. J. Math. 103 (1981) 1021-1063.Zentralblatt MATH: 0484.53035
Mathematical Reviews (MathSciNet): MR630777
Digital Object Identifier: doi:10.2307/2374257
JSTOR: links.jstor.org - [8] T. Coulhon, Iteration de Moser et estimation Gaussienne du noyau de la chaleur, J. Operator Theory 29 (1993) 157-165.
- [9] E. B. Davies and M. M. H. Pang, Sharp heat kernel bounds for some Laplace operators, Quart. J. Math. 40 (1989) 281-290.Zentralblatt MATH: 0701.35004
Mathematical Reviews (MathSciNet): MR1010819
Digital Object Identifier: doi:10.1093/qmath/40.3.281 - [10] E. B. Davies, Heat kernels and spectral theory, Cambridge University Press, Cambridge, 1989.
- [11] E. B. Davies, Explicit constants for Gaussian upper bounds on heat kernels, Amer. J. Math. 109 (1987) 319-334.Zentralblatt MATH: 0659.35009
Mathematical Reviews (MathSciNet): MR882426
Digital Object Identifier: doi:10.2307/2374577
JSTOR: links.jstor.org - [12] E. B. Davies, Gaussian upper bounds for the heat kernel of some second-order operators on Riemannian manifolds, J. Funct. Anal. 80 (1988) 16-32.Zentralblatt MATH: 0759.58045
Mathematical Reviews (MathSciNet): MR960220
Digital Object Identifier: doi:10.1016/0022-1236(88)90062-6 - [13] E. B. Davies, Analysis on graphs and noncommutative geometry, J. Funct. Anal. I l l (1993) 398-430.Zentralblatt MATH: 0793.46043
Mathematical Reviews (MathSciNet): MR1203460
Digital Object Identifier: doi:10.1006/jfan.1993.1019 - [14] J. Dodziuk, Maximum principle for parabolic inequalities and the heat flow on open manifolds, Indiana Univ. Math. J. 32 (1983) 703-716.Zentralblatt MATH: 0526.58047
Mathematical Reviews (MathSciNet): MR711862
Digital Object Identifier: doi:10.1512/iumj.1983.32.32046 - [15] E. B. Fabes and D. W. Stroock, A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash, Arch. Rational Mech. Anal. 96 (1986) 327-338.Zentralblatt MATH: 0652.35052
Mathematical Reviews (MathSciNet): MR855753
Digital Object Identifier: doi:10.1007/BF00251802 - [16] A. Grigor'yan, Gaussian upper bounds for the heat kernel and for its derivatives on a Riemannian manifold, Proc. ARW on Potential Theory, Chateau de Bonas, July 1993 (ed. K.GowriSankaran), Kluwer Academic Publishers, Dordrecht, 1994, 237-252.
- [17] A. Grigor'yan, Upper bounds of derivatives of the heat kernel on an arbitrary complete manifold, J. Funct. Anal. 127 (1995) 363-389.Zentralblatt MATH: 0842.58070
Mathematical Reviews (MathSciNet): MR1317722
Digital Object Identifier: doi:10.1006/jfan.1995.1016 - [18] A. Grigor'yan, Heat kernel upper bounds on a complete non-compact manifold, Rev. Math. Iberoamericana 10 (1994) 395-452.
- [19] A. Grigor'yan, Integral maximum principle and its applications, Proc. Roy. Soc. Edinburgh 124 Sect. A (1994) 353-362.
- [20] A. Grigor'yan, Heat kernel on a manifold with a local Harnack inequality, Comm. Anal. Geom. 2 (1994) 111-138.
- [21] A. K. Gushchin, V. P. Michailov and Ju. A. Michailov, On uniform stabilization of the solution of the second mixed problem for a second order parabolic equation, (in Russian) Matem. Sbornik 128 (170) (1985) No. 2, 147-168. Engl, transl. Math. USSR Sb. 56 (1987) 141-162.
- [22] A. K. Gushchin, On the uniform stabilization of solutions of the second mixed problem for a parabolic equation, (in Russian) Matem. Sbornik 119 (161) (1982) No. 4, 451-508, Engl, transl. Math. USSR Sb. 47 (1984) 439-498.
- [23] W. Hebish and L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on groups, Ann. Probab. 21 (1993) 673-709.Zentralblatt MATH: 0776.60086
Mathematical Reviews (MathSciNet): MR1217561
Digital Object Identifier: doi:10.1214/aop/1176989263
Project Euclid: euclid.aop/1176989263 - [24] P. Li and S.-T. Yau, On the parabolic kernel of the Schrodinger operator, Acta Math. 156 (1986) 153-201.Zentralblatt MATH: 0611.58045
Mathematical Reviews (MathSciNet): MR834612
Digital Object Identifier: doi:10.1007/BF02399203 - [25] J.Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. M a t h. 80 (1958) 931-954.Zentralblatt MATH: 0096.06902
Mathematical Reviews (MathSciNet): MR100158
Digital Object Identifier: doi:10.2307/2372841
JSTOR: links.jstor.org - [26] F. O. Porper and S.D. Eidel'man, Two-side estimates of fundamental solutions of second-order parabolic equations and some applications, (in Russian) Uspechi Mat. Nauk 39 (1984) No. 3, 101-156, Engl, transl. Russian Math. Surveys 39 (1984) No. 3, 119-178.
- [27] V. I. Ushakov, Stabilization of solutions of the third mixed problem for a second order parabolic equation in a non-cylindric domain, (in Russian) Matem. Sbornik 111 (1980) 95-115, Engl, transl., Math. USSR Sb. 39 (1981) 87-105.
- [28] N. Th. Varopoulos, Hardy-Littlewood theory for semigoups, J. Funct. Anal. 63 (1985) 240-260.Zentralblatt MATH: 0608.47047
Mathematical Reviews (MathSciNet): MR803094
Digital Object Identifier: doi:10.1016/0022-1236(85)90087-4 - [29] N. Th. Varopoulos, Analysis on Lie groups J. Funct. Anal. 76 (1988) 346-410.Zentralblatt MATH: 0634.22008
Mathematical Reviews (MathSciNet): MR924464
Digital Object Identifier: doi:10.1016/0022-1236(88)90041-9 - [30] N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and geometry on groups, Cambridge University Press, Cambridge, 1992. Imperial College, London

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Estimates of global bounds for some Schrödinger heat kernels on manifolds
Zhang, Qi S. and Zhao, Z., Illinois Journal of Mathematics, 2000 - Gaussian Upper Bounds for Heat Kernels of Continuous Time Simple Random Walks
Folz, Matthew, Electronic Journal of Probability, 2011 - Analyse sur les groupes de Lie à croissance polynômiale
Saloff-Coste, Laurent, Arkiv för Matematik, 1990
- Estimates of global bounds for some Schrödinger heat kernels on manifolds
Zhang, Qi S. and Zhao, Z., Illinois Journal of Mathematics, 2000 - Gaussian Upper Bounds for Heat Kernels of Continuous Time Simple Random Walks
Folz, Matthew, Electronic Journal of Probability, 2011 - Analyse sur les groupes de Lie à croissance polynômiale
Saloff-Coste, Laurent, Arkiv för Matematik, 1990 - Heat kernel estimates for random walks with degenerate weights
Andres, Sebastian, Deuschel, Jean-Dominique, and Slowik, Martin, Electronic Journal of Probability, 2016 - Li-Yau gradient estimate and entropy formulae for the CR heat equation in a closed pseudohermitian 3-manifold
Chang, Shu-Cheng, Kuo, Ting-Jung, and Lai, Sin-Hua, Journal of Differential Geometry, 2011 - Harnack inequality for SDE with multiplicative noise and extension to Neumann semigroup on nonconvex manifolds
Wang, Feng-Yu, The Annals of Probability, 2011 - Heat Kernel Lower Gaussian Estimates in the Doubling Setting Without Poincaré Inequality
Boutayeb, Salahaddine, Publicacions Matemàtiques, 2009 - Large time behavior of the heat kernel
Xu, Guoyi, Journal of Differential Geometry, 2014 - Moment bounds for some fractional stochastic heat equations on the ball
Nualart, Eulalia, Electronic Communications in Probability, 2018 - On the regularity of sample paths of sub-elliptic diffusions on manifolds
Bendikov, Alexander and Saloff-Coste, Laurent, Osaka Journal of Mathematics, 2005