Journal of Differential Geometry

Centrally symmetric convex bodies and the spherical Radon transform

Paul Goodey and Wolfgang Weil

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 35, Number 3 (1992), 675-688.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214448262

Digital Object Identifier
doi:10.4310/jdg/1214448262

Mathematical Reviews number (MathSciNet)
MR1163454

Zentralblatt MATH identifier
0735.52005

Subjects
Primary: 44A12: Radon transform [See also 92C55]
Secondary: 52A20: Convex sets in n dimensions (including convex hypersurfaces) [See also 53A07, 53C45]

Citation

Goodey, Paul; Weil, Wolfgang. Centrally symmetric convex bodies and the spherical Radon transform. J. Differential Geom. 35 (1992), no. 3, 675--688. doi:10.4310/jdg/1214448262. https://projecteuclid.org/euclid.jdg/1214448262


Export citation

References

  • [1] A. D.Alexandrov, Zur Theorie der gemischten Volumina von konvexen korpern II. Neue Ungleichungenzwischen den gemischten Volunmina und ihreAnwendungen, Mat. Sb. (N.S.) 2 (1937) 1205-1238. (Russian, with German summary)
  • [2] C. Berg, Corps convexes et potentiels spheriques, Danske Vid. Selsk. Mat.-Fys. Medd. 37 (1969) 1-64.
  • [3] W. Blaschke, Kreis und Kugel, Veit, 1916; 2nd ed., de Gruyter, Berlin, 1956.
  • [4] W. Blaschke, Kreis und Kugel, Vorlesungen ber Differentialgeometrie. II.Affine Differentialgeometrie, Springer, Berlin, 1923.
  • [5] W. Blaschke and K. Reidemeister, Uber die Entwicklung der Affingeometrie, Uber.DMV 31 (1922) 63-82.
  • [6] E. D. Bolker, The zonoidproblem, Amer. Math. Monthly 78 (1971) 529-531.
  • [7] T. Bonnesen and W. Fenchel, Theorie der konvexen korper, Springer, Berlin, 1934.
  • [8] G. Choquet, Lectures on analysis, Vol. Ill, Benjamin, Reading, MA, 1969.
  • [9] G. Choquet, Lectures on analysis, Mesures coniques, affineset cylindriques, Symposia Math., Vol. II (INDAM, Rome 1968), Academic Press, London, 1969.
  • [10] W. J. Firey, The determination of convex bodies from their mean radius of curvature functions, Mathematika 14 (1967) 1-13.
  • [11] W. J. Firey, Christoffel's problem for general convex bodies, Mathematika 15 (1968) 7-21.
  • [12] P. Funk, Uber Flchen mit lauter geschlossenen geodtischen Linien, Math. Ann. 74 (1913) 278-300.
  • [13] P. R. Goodey and W. Weil, Centrally symmetric convex bodies and Radon transforms on higher order Grassmannians, Mathematika 38 (1991) 117-133.
  • [14] S. Helgason, Differential operators on homogeneous spaces, Acta Math. 102 (1959) 239-299.
  • [15] S. Helgason, TheRadon transform, Birkhauser, Boston, 1980.
  • [16] S. Helgason, Groupsand geometric analysis, Academic Press, New York, 1984.
  • [17] K. Leichtweiss, Konvexe Mengen, Springer, Berlin, 1980.
  • [18] G. Matheron, Un thoreme d'unicite pour les hyperplans poissoniens, J. Appl. Probab. 11 (1974) 184-189.
  • [19] G. Matheron, Radon sets and integral geometry, Wiley, New York, 1975.
  • [20] H. Minkowski, Uber die korper konstanter Breite, CollectedWorks, Vol. 2, 1911, 277-279.
  • [21] C. Muller, Spherical harmonics, Lecture Notes in Math., Vol. 17, Springer, Berlin, 1966.
  • [22] G. Yu. Panina, The representation of an n-dimensional body in the form of a sum of (n -)-dimensionalbodies, Izv. Akad. Nauk Armyan. SSR Ser. Mat.23 (1988) 385-395; English transl., Soviet J. Contemporary Math. Anal. 23 (1988) 91-103.
  • [23] C. M. Petty, Centroid surfaces, Pacific J. Math. 11 (1961) 1535-1547.
  • [24] N. W. Rickert, Measures whose range is a ball, Pacific J. Math. 23 (1967) 361-371.
  • [25] N. W. Rickert, The range of a measure, Bull. Amer. Amer. Soc. 73 (1967) 560-563.
  • [26] R. Schneider, Zu einem Problem von Shephard uber die Projektionen konvexer korper, Math. Z. 101 (1967) 71-82.
  • [27] R. Schneider, Functions on a sphere with vanishing integrals over certain subspheres, J. Math. Anal. Appl. 26 (1969) 381-384.
  • [28] R. Schneider, Uber eine Integralgleichung in der Theorieder konvexen korper, Math. Nachr. 44 (1970) 55-75.
  • [29] R. Schneider, Functional equations connected with rotations and their geometric applications, Enseignement Math. 16 (1970) 297-305.
  • [30] R. Schneider and W. Weil, Uberdie Bestimmung eines konvexenkorpers durch die Inhalte seiner Projektionen, Math. Z. 116 (1970) 338-348.
  • [31] R. Schneider and W. Weil, Zonoids and related topics, Convexity and its Applications (P. Gruber and J. M. Wills, eds.), Birkhauser, Basel, 1983, 296-317.
  • [32] L. Schwartz, Theorie des distributions, Hermann, Paris, 1966.
  • [33] G. C. Shephard, Approximation problemsfor convexpolyhedra, Mathematika 11 (1964) 9-18.
  • [34] R. Strichartz, Of estimates for Radon transforms in Euclidean and non-Euclidean spaces, Duke Math. J. 48 (1981) 699-727.
  • [35] W. Weil, Kontinuierliche Linearkombination von Strecken, Math. Z. 148 (1976) 71-84.
  • [36] W. Weil, Centrally symmetric convex bodies and distributions, Israel J. Math. 24 (1976) 352-367.
  • [37] W. Weil, Blaschkes Problem der lokalen Charakterisierung von Zonoiden, Arch. Math. 29 (1977) 655-659.