Journal of Differential Geometry

Constant mean curvature surface, harmonic maps, and universal Teichmüller space

Tom Yau-Heng Wan

Full-text: Open access

Article information

J. Differential Geom., Volume 35, Number 3 (1992), 643-657.

First available in Project Euclid: 26 June 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 58E20: Harmonic maps [See also 53C43], etc.
Secondary: 32G15: Moduli of Riemann surfaces, Teichmüller theory [See also 14H15, 30Fxx] 53A10: Minimal surfaces, surfaces with prescribed mean curvature [See also 49Q05, 49Q10, 53C42]


Wan, Tom Yau-Heng. Constant mean curvature surface, harmonic maps, and universal Teichmüller space. J. Differential Geom. 35 (1992), no. 3, 643--657. doi:10.4310/jdg/1214448260.

Export citation


  • [1] K. Akutagawa, Harmonic diffeomorphisms of the hyperbolic plane, preprint.
  • [2] K. Akutagawa and S. Nishikawa, The Gauss map and spacelike surface with prescribed mean curvature in Minkowski 3-space, Tohoku Math. J. 42 (1990) 67-82.
  • [3] S. Y. Cheng and S. T. Yau, differential equations on Riemannian manifolds and their geometric applications, Comm. Pure. Appl. Math. 28 (1975) 333-354.
  • [4] S. Y. Cheng and S. T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski space, Ann. of Math. (2) 104 (1976) 407-419.
  • [5] H.I. Choi and A. Treibergs, Gauss maps of spacelike constant mean curvature hypersurfaces of Minkowski space, J. Differential Geometry 32 (1990), 775-817.
  • [6] D. Gilbarg and N. S.Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer, New York, 1983.
  • [7] T. K. Milnor, Harmonic maps and classical surface theory in Minkowski space, Trans. Amer. Math. Soc.280 (1983) 161-185.
  • [8] R. Schoen and S.T. Yau, On univalent harmonic maps between surfaces, Invent. Math.44 (1978) 265-278.
  • [9] M.Wolf, The Teichmller theory of harmonic maps, J. Differential Geometry 29 (1989) 449-479.