Journal of Differential Geometry

A rigidity theorem for properly embedded minimal surfaces in ${\bf R}\sp 3$

Hyeong In Choi, William H. Meeks, III, and Brian White

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 32, Number 1 (1990), 65-76.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214445037

Digital Object Identifier
doi:10.4310/jdg/1214445037

Mathematical Reviews number (MathSciNet)
MR1064865

Zentralblatt MATH identifier
0704.53008

Subjects
Primary: 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42]

Citation

Choi, Hyeong In; Meeks, III, William H.; White, Brian. A rigidity theorem for properly embedded minimal surfaces in ${\bf R}\sp 3$. J. Differential Geom. 32 (1990), no. 1, 65--76. doi:10.4310/jdg/1214445037. https://projecteuclid.org/euclid.jdg/1214445037


Export citation

References

  • [1] M. Callahan, D. Hoffman, and W. H. Meeks, III, Embedded minimal surfaces with an infinite number of ends, Invent. Math. 96 (1989) 459-505.
  • [2] M. do Carmo and C. K. Peng, Stable minimal surfaces in R3 are planes, Bull. Amer. Math. Soc. 1 (1979) 903-906.
  • [3] D. Fischer-Colbrie, On complete minimal surfaceswith finite Morse index in 3-manifolds, Invent. Math. 82 (1985) 121-132.
  • [4] D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980) 199-211.
  • [5] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, second ed., Springer, New York, 1983.
  • [6] D. Hoffman and W. H. Meeks, III, Embedded minimal surfacesof finite topology, Ann. of Math, (to appear).
  • [7] D. Hoffman and W. H. Meeks, III, The asymptotic behavior of properly embedded minimal surfaces of finite topology, J. Amer. Math. Soc. 2 (1989) 667-682.
  • [8] R. Langevin and H. Rosenberg, A maximum principle at infinity for minimal surfaces and applications, Duke Math. J. 57 (1988) 819-828.
  • [9] H. B. Lawson, Jr., Complete minimal surfaces in S3, Ann. of Math. (2) 92 (1970) 335-374.
  • [10] W. H. Meeks, III and H. Rosenberg, The maximum principle at infinity for minimal surfaces in flat three-manifolds, to appear in Comment. Math. Helv.
  • [11] W. H. Meeks, III and S. T. Yau, The existence of embedded minimal surfaces and the problems of uniqueness, Math. Z. 179 (1982) 151-168.
  • [12] W. H. Meeks, III and S. T. Yau, The topological uniqueness theorem for complete minimal surfaces of finite topological type, preprint.
  • [13] R. Osserman, A survey of minimal surfaces, 2nd ed., Dover, New York, 1986.
  • [14] B. Riemann, Oevres mathematiques de Riemann, Gauthiers-Villars, Paris, 1898.
  • [15] R. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geometry 18 (1983) 791-809.
  • [16] L. Simon, Lectures on geometric measure theory, Vol. 3, Proc. Center for Math. Analysis, Australian National University, Canberra, Australia, 1983.