Journal of Differential Geometry
- J. Differential Geom.
- Volume 32, Number 1 (1990), 65-76.
A rigidity theorem for properly embedded minimal surfaces in ${\bf R}\sp 3$
Hyeong In Choi, William H. Meeks, III, and Brian White
Full-text: Open access
Article information
Source
J. Differential Geom., Volume 32, Number 1 (1990), 65-76.
Dates
First available in Project Euclid: 26 June 2008
Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214445037
Digital Object Identifier
doi:10.4310/jdg/1214445037
Mathematical Reviews number (MathSciNet)
MR1064865
Zentralblatt MATH identifier
0704.53008
Subjects
Primary: 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42]
Citation
Choi, Hyeong In; Meeks, III, William H.; White, Brian. A rigidity theorem for properly embedded minimal surfaces in ${\bf R}\sp 3$. J. Differential Geom. 32 (1990), no. 1, 65--76. doi:10.4310/jdg/1214445037. https://projecteuclid.org/euclid.jdg/1214445037
References
- [1] M. Callahan, D. Hoffman, and W. H. Meeks, III, Embedded minimal surfaces with an infinite number of ends, Invent. Math. 96 (1989) 459-505.Zentralblatt MATH: 0676.53004
Mathematical Reviews (MathSciNet): MR996552
Digital Object Identifier: doi:10.1007/BF01393694 - [2] M. do Carmo and C. K. Peng, Stable minimal surfaces in R3 are planes, Bull. Amer. Math. Soc. 1 (1979) 903-906.Zentralblatt MATH: 0442.53013
Mathematical Reviews (MathSciNet): MR546314
Digital Object Identifier: doi:10.1090/S0273-0979-1979-14689-5
Project Euclid: euclid.bams/1183544900 - [3] D. Fischer-Colbrie, On complete minimal surfaceswith finite Morse index in 3-manifolds, Invent. Math. 82 (1985) 121-132.Zentralblatt MATH: 0573.53038
Mathematical Reviews (MathSciNet): MR808112
Digital Object Identifier: doi:10.1007/BF01394782 - [4] D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980) 199-211.Zentralblatt MATH: 0439.53060
Mathematical Reviews (MathSciNet): MR562550
Digital Object Identifier: doi:10.1002/cpa.3160330206 - [5] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, second ed., Springer, New York, 1983.
- [6] D. Hoffman and W. H. Meeks, III, Embedded minimal surfacesof finite topology, Ann. of Math, (to appear).Zentralblatt MATH: 0695.53004
- [7] D. Hoffman and W. H. Meeks, III, The asymptotic behavior of properly embedded minimal surfaces of finite topology, J. Amer. Math. Soc. 2 (1989) 667-682.Zentralblatt MATH: 0683.53005
Mathematical Reviews (MathSciNet): MR1002088
Digital Object Identifier: doi:10.2307/1990892
JSTOR: links.jstor.org - [8] R. Langevin and H. Rosenberg, A maximum principle at infinity for minimal surfaces and applications, Duke Math. J. 57 (1988) 819-828.Zentralblatt MATH: 0667.49024
Mathematical Reviews (MathSciNet): MR975123
Digital Object Identifier: doi:10.1215/S0012-7094-88-05736-5
Project Euclid: euclid.dmj/1077307214 - [9] H. B. Lawson, Jr., Complete minimal surfaces in S3, Ann. of Math. (2) 92 (1970) 335-374.Zentralblatt MATH: 0205.52001
Mathematical Reviews (MathSciNet): MR270280
Digital Object Identifier: doi:10.2307/1970625
JSTOR: links.jstor.org - [10] W. H. Meeks, III and H. Rosenberg, The maximum principle at infinity for minimal surfaces in flat three-manifolds, to appear in Comment. Math. Helv.Zentralblatt MATH: 0713.53008
Mathematical Reviews (MathSciNet): MR1057243
Digital Object Identifier: doi:10.1007/BF02566606 - [11] W. H. Meeks, III and S. T. Yau, The existence of embedded minimal surfaces and the problems of uniqueness, Math. Z. 179 (1982) 151-168.Zentralblatt MATH: 0479.49026
Mathematical Reviews (MathSciNet): MR645492
Digital Object Identifier: doi:10.1007/BF01214308 - [12] W. H. Meeks, III and S. T. Yau, The topological uniqueness theorem for complete minimal surfaces of finite topological type, preprint.Zentralblatt MATH: 0761.53006
- [13] R. Osserman, A survey of minimal surfaces, 2nd ed., Dover, New York, 1986.
- [14] B. Riemann, Oevres mathematiques de Riemann, Gauthiers-Villars, Paris, 1898.
- [15] R. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geometry 18 (1983) 791-809.Zentralblatt MATH: 0575.53037
Mathematical Reviews (MathSciNet): MR730928
Project Euclid: euclid.jdg/1214438183 - [16] L. Simon, Lectures on geometric measure theory, Vol. 3, Proc. Center for Math. Analysis, Australian National University, Canberra, Australia, 1983.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Complete minimal surfaces lying in simple subsets of {${\bf R}\sp 3$}
Jin, Sun Sook, Kodai Mathematical Journal, 2001 - Minimal surfaces in ${\Bbb M}\sp 2\times\Bbb R$
Rosenberg, Harold, Illinois Journal of Mathematics, 2002 - On the range of ${\bf R}\sp 2$ or ${\bf R}\sp 3$-valued harmonic
morphisms
Duheille, F., The Annals of Probability, 1998
- Complete minimal surfaces lying in simple subsets of {${\bf R}\sp 3$}
Jin, Sun Sook, Kodai Mathematical Journal, 2001 - Minimal surfaces in ${\Bbb M}\sp 2\times\Bbb R$
Rosenberg, Harold, Illinois Journal of Mathematics, 2002 - On the range of ${\bf R}\sp 2$ or ${\bf R}\sp 3$-valued harmonic
morphisms
Duheille, F., The Annals of Probability, 1998 - Complete properly embedded minimal surfaces in $\mathbf{R}^3$
Colding, Tobias H. and Minicozzi, William P., Duke Mathematical Journal, 2001 - Flux of simple ends of maximal surfaces in ${\bf R}^{2,1}$
IMAIZUMI, Taishi and KATO, Shin, Hokkaido Mathematical Journal, 2008 - Analytic extension of Jorge-Meeks type maximal surfaces in Lorentz-Minkowski 3-space
Fujimori, Shoichi, Kawakami, Yu, Kokubu, Masatoshi, Rossman, Wayne, Umehara, Masaaki, and Yamada, Kotaro, Osaka Journal of Mathematics, 2017 - Helicoidal minimal surfaces of prescribed genus
Hoffman, David, Traizet, Martin, and White, Brian, Acta Mathematica, 2016 - Properly embedded, area-minimizing surfaces in hyperbolic 3-space
Martín, Francisco and White, Brian, Journal of Differential Geometry, 2014 - Stable minimal surfaces in M × ℝ
Meeks III, William H., Journal of Differential Geometry, 2004 - Axial minimal surfaces in $S^2 x R$ are helicoidal
Hoffman, David and White, Brian, Journal of Differential Geometry, 2011