Journal of Differential Geometry
- J. Differential Geom.
- Volume 21, Number 1 (1985), 135-142.
Invariant polynomials of the automorphism group of a compact complex manifold
Akito Futaki and Shigeyuki Morita
Full-text: Open access
Article information
Source
J. Differential Geom., Volume 21, Number 1 (1985), 135-142.
Dates
First available in Project Euclid: 26 June 2008
Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214439469
Digital Object Identifier
doi:10.4310/jdg/1214439469
Mathematical Reviews number (MathSciNet)
MR806707
Zentralblatt MATH identifier
0598.53055
Subjects
Primary: 32M05: Complex Lie groups, automorphism groups acting on complex spaces [See also 22E10]
Secondary: 53C55: Hermitian and Kählerian manifolds [See also 32Cxx]
Citation
Futaki, Akito; Morita, Shigeyuki. Invariant polynomials of the automorphism group of a compact complex manifold. J. Differential Geom. 21 (1985), no. 1, 135--142. doi:10.4310/jdg/1214439469. https://projecteuclid.org/euclid.jdg/1214439469
References
- [1] M. F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1-28.Zentralblatt MATH: 0521.58025
Mathematical Reviews (MathSciNet): MR721448
Digital Object Identifier: doi:10.1016/0040-9383(84)90021-1 - [2] S. Bando, An obstruction for Chern class forms to be harmonic, preprint.Zentralblatt MATH: 1132.53313
Mathematical Reviews (MathSciNet): MR2278770
Digital Object Identifier: doi:10.2996/kmj/1162478766
Project Euclid: euclid.kmj/1162478766 - [3] N. Berline and M. Vergne, Zeros d'un champ de lecteurs et classes characteristique equivariantes, Duke Math. J. 50 (1983) 539-549.Zentralblatt MATH: 0515.58007
Mathematical Reviews (MathSciNet): MR705039
Digital Object Identifier: doi:10.1215/S0012-7094-83-05024-X
Project Euclid: euclid.dmj/1077303208 - [4] N. Berline and M. Vergne, The equivariant index and Kirillov's character formula, preprint.Zentralblatt MATH: 0604.58046
- [5] R. Bott, Vector fields and characteristic numbers, Michigan Math. J. 14 (1967) 231-244.Zentralblatt MATH: 0145.43801
Mathematical Reviews (MathSciNet): MR211416
Digital Object Identifier: doi:10.1307/mmj/1028999721
Project Euclid: euclid.mmj/1028999721 - [6] R. Bott, A residue formula for holomorphic vector fields, J. Differential Geometry 1 (1967) 311-330.Zentralblatt MATH: 0179.28801
Mathematical Reviews (MathSciNet): MR232405
Project Euclid: euclid.jdg/1214428096 - [7] R. Bott, On a topological obstruction to integrability, Proc. Sympos. Pure Math. Vol. 16, Amer. Math. So, 1970, 127-131.
- [8] R. Bott, On the Lefschetz formula and exotic characteristic classes, Sympos. Math. 10 (1972) 95-105.
- [9] E. Calabi, Extremal Kahler metrics, Seminars on Differential Geometry (S. T. Yau, ed.), Princeton Univ. Press, 1982, 259-290; II with the same title, preprint.
- [10] J. Cheeger and J. Simons, Differential characters and geometric invariants, preprint.
- [11] S. S. Chern and J. Simons, Characteristic forms and geometric invariants, Ann. of Math. (2) 99 (1974) 48-69.Zentralblatt MATH: 0283.53036
Mathematical Reviews (MathSciNet): MR353327
Digital Object Identifier: doi:10.2307/1971013
JSTOR: links.jstor.org - [12] J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982) 259-268; Addendum, ibid., 72 (1983) 153-158.Zentralblatt MATH: 0503.58016
Mathematical Reviews (MathSciNet): MR674406
Digital Object Identifier: doi:10.1007/BF01399506 - [13] A. Futaki, An obstruction to the existence of Einstein Kahler metrics, Invent. Math. 73 (1983) 437-443.Zentralblatt MATH: 0506.53030
Mathematical Reviews (MathSciNet): MR718940
Digital Object Identifier: doi:10.1007/BF01388438 - [14] A. Futaki, On compact Kahler manifolds of constant scalar curvature, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983) 401-402.Zentralblatt MATH: 0539.53048
Mathematical Reviews (MathSciNet): MR726535
Digital Object Identifier: doi:10.3792/pjaa.59.401
Project Euclid: euclid.pja/1195515415 - [15] A. Futaki and S. Morita, Invariant polynomials on compact complex manifolds, Proc. Japan Acad. Ser. A Math. Sci. 60 (1984) 369-372.Zentralblatt MATH: 0587.32042
Mathematical Reviews (MathSciNet): MR778532
Digital Object Identifier: doi:10.3792/pjaa.60.369
Project Euclid: euclid.pja/1195514912 - [16] J. L. Kazdan and F. W. Warner, Curvature functions for compact 2-manifolds, Ann. of Math. (2) 99 (1974) 14-47.Zentralblatt MATH: 0273.53034
Mathematical Reviews (MathSciNet): MR343205
Digital Object Identifier: doi:10.2307/1971012
JSTOR: links.jstor.org - [17] S. Morita, Characteristic classes of surface bundles, Bull. Amer. Math. Soc. 11 (1984) 386-388.Zentralblatt MATH: 0579.55006
Mathematical Reviews (MathSciNet): MR752805
Digital Object Identifier: doi:10.1090/S0273-0979-1984-15321-7
Project Euclid: euclid.bams/1183552184 - [18] S. T. Yau, On the Ricci curvature of a compact Kahler manifold and the complex Monge-Ampere equation. I, Comm. Pure Appl. Math. 31 (1978) 339-411.Zentralblatt MATH: 0369.53059
Mathematical Reviews (MathSciNet): MR480350
Digital Object Identifier: doi:10.1002/cpa.3160310304

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Stabilization for the automorphisms of free groups with boundaries
Hatcher, Allen and Wahl, Nathalie, Geometry & Topology, 2005 - Automorphism groups of Joyce twistor spaces
Fujiki, Akira, Kyoto Journal of Mathematics, 2013 - On the automorphism groups of $f$-manifolds
Nakagawa, Hisao, Kodai Mathematical Seminar Reports, 1966
- Stabilization for the automorphisms of free groups with boundaries
Hatcher, Allen and Wahl, Nathalie, Geometry & Topology, 2005 - Automorphism groups of Joyce twistor spaces
Fujiki, Akira, Kyoto Journal of Mathematics, 2013 - On the automorphism groups of $f$-manifolds
Nakagawa, Hisao, Kodai Mathematical Seminar Reports, 1966 - Automorphisms of Cotangent Bundles of Lie Groups
Diatta, A. and Manga, B., African Diaspora Journal of Mathematics, 2014 - Compact Riemann surfaces with large automorphism groups
MATSUNO, Takanori, Journal of the Mathematical Society of Japan, 1999 - Hyperbolic $2$–dimensional manifolds with $3$–dimensional automorphism group
Isaev, Alexander V, Geometry & Topology, 2008 - Convergence of Automorphisms and Semicontinuity of Automorphism Groups
Krantz, Steven G., Real Analysis Exchange, 2011 - A Burns-Epstein invariant for ACHE 4-manifolds
Biquard, Olivier and Herzlich, Marc, Duke Mathematical Journal, 2005 - On automorphism groups of quaternion Kähler manifolds
Takemura, Yoshiya, Kodai Mathematical Seminar Reports, 1976 - Groups of automorphisms of almost Kaehler manifolds
Goldberg, S. I., Bulletin of the American Mathematical Society, 1960