Journal of Differential Geometry

Assignments and abstract moment maps

Viktor L. Ginzburg, Victor Guillemin, and Yael Karshon

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 52, Number 2 (1999), 259-301.

Dates
First available in Project Euclid: 25 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214425278

Digital Object Identifier
doi:10.4310/jdg/1214425278

Mathematical Reviews number (MathSciNet)
MR1758297

Zentralblatt MATH identifier
0977.53078

Subjects
Primary: 53D20: Momentum maps; symplectic reduction
Secondary: 57R85: Equivariant cobordism 57S25: Groups acting on specific manifolds

Citation

Ginzburg, Viktor L.; Guillemin, Victor; Karshon, Yael. Assignments and abstract moment maps. J. Differential Geom. 52 (1999), no. 2, 259--301. doi:10.4310/jdg/1214425278. https://projecteuclid.org/euclid.jdg/1214425278


Export citation

References

  • [1] M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982) 1-15.
  • [2] M. F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1-28.
  • [3] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison- Wesley, Reading, MA, 1969.
  • [4] M. Audin, The topology of torus actions on symplectic manifolds, Birkhäuser, Basel, 1991.
  • [5] P. Bradley, Private communication.
  • [6] G. E. Bredon, Equivariant cohomology theories, Lecture Notes in Math. Vol.34, Springer, Berlin, 1967.
  • [7] A. Borei, Seminar on transformation groups, Ann. of Math. Stud. Princeton Univ. Press, Princeton, 1960.
  • [8] A. Cannas da Silva and A. Weinstein, Lectures on geometries models for noncommutative algebras, Berkeley Math. Lecture Notes 10, Amer. Math. Soc, 1999.
  • [9] T. Delzant, Hamiltoniens périodiques et image convexe de l'application moment, Bull. Soc. Math. France 116 (1988) 315-339.
  • [10] M. Duflo, S. Kumar and M. Vergne, Sur la cohomologie équivariante des variété différentiables, Astérisque 205 (1993).
  • [11] W. Fulton, Introduction to toric varieties, Princeton Univ. Press, Princeton, 1993.
  • [12] V. L. Ginzburg, V. Guillemin and Y. Karshon, Cobordism theory and localization formulas for Hamiltonian group actions, Internat. Math. Res. Notices 5 (1996) 221-234.
  • [13] V. L. Ginzburg, Moment maps, cobordisms, and Hamiltonian group actions, in preparation, to be published in Amer. Math. Soc. University Lecture Series.
  • [14] V. L. Ginzburg, The relation between compact and non-compact equivariant cobordisms, Tel Aviv Topology Conference: Rothenberg Festschrift, M. Farber, W. Lueck, and S. Weinberger (Editors); Publ. Amer. Math. Soc, Contemp. Math. 231 (1999) 99-112.
  • [15] M. Goretsky, R. Kottwitz and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998) 25-83.
  • [16] V. Guillemin and A. Pollack, Differential topology, Prentice-Hall, Englewood Cliffs, NJ, 1974.
  • [17] V. Guillemin, Moment maps and combinatorial invariants of Hamiltonian Tn spaces, Progr. Math. Vol. 122, Birkhäuser, Boston, MA, 1994.
  • [18] V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982) 491-513.
  • [19] S. M. Gusein-Zade, The action of a circle on manifolds, (Russian) Mat. Zametki 10 (1971) 511-518. English translation: Math. Notes 10 (1971) 731-734 (1972).
  • [20] W. Y. Hsiang, Cohomology theory of topological transformation groups, Springer, Berlin, 1975.
  • [21] C. U. Jensen, Les Fondeurs derives de lim et leurs applications en théorie des modules, Lecture Notes in Math., Vol.274; Springer, Berlin, 1972.
  • [22] Y. Karshon, Hamiltonian torus actions, in: Geometry and Physics, Lecture notes in Pure and Appl. Math. Ser. 184 Dekker, Reading, MA, 1996, 221-230.
  • [23] Y. Karshon, Hamiltonian torus actions, Moment maps and non-compact cobordisms, J. Differential Geoni. 49 (1998) 183-201.
  • [24] Y. Karshon and S. Tolman, The moment map and line bundles over pre-symplectic torte manifolds, J. Differential Geom. 38 (1993) 465-484.
  • [25] Y. Karshon and S. Tolman, Complexity one spaces (provisional title), in preparation.
  • [26] F. Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Princeton Univ. Press, Princeton, 1984.
  • [27] J. L. Koszul, Sur certains groupes de transformations de Lie, Colloq. Internat. Centre Nat. Recher. Sci. 52 (1953) 137-141.
  • [28] S. Lang, Algebra, second ed., Addison-Wesley, Reading, MA, 1984.
  • [29] D. Lewis, Lagrangian block diagonalization, J. Dynamics Differenmtial Equations 4 (1992) 1-41.
  • [30] B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press, Oxford, 1966.
  • [31] W. S. Massey, Homology and cohomology theory. An approach based on Alexander- Spanier cochains, Monographs Textbooks Pure Appl. Math., Vol. 46. Dekker, New York, 1978.
  • [32] E. Meinrenken and C. Woodward, Fusion of Hamiltonian loop group manifolds and cobordism, dg-ga/9707019, to appear in Math. Z.
  • [33] E. Meinrenken and C. Woodward, Moduli spaces of flat connections on 2-manifolds, cobordism, and Witten's volume formulas, to appear in Progress in Geometry.
  • [34] D. S. Metzler, Topological Invariants of Symplectic Quotients, Ph. D. Thesis, M.I.T. June, 1997.
  • [35] D. S. Metzler, A wall-crossing formula for the signature of symplectic quotients, to appear in Trans. Amer. Math. Soc.
  • [36] I. Moerdijk, Classifying spaces and classifying topoi, Lecture Notes in Math., Vol. 1616, Springer, Berlin, 1995.
  • [37] Yu. B. Rudyak, On Thorn spectra, orientability and cobordism, Springer, Berlin, 1998.
  • [38] G. W. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975) 63-68.
  • [39] M. Artin, A. Grothendieck and J. L. Verdier, Theorie des Topos et Cohomologie Etale des Shémas, Lecture Notes in Math. Vol.269, Springer, Berlin, 1972.
  • [40] J. C. Simo, D. Lewis and J. Marsden, The stability of relative equilibria. Part I: The reduced energy-momentum method, Arch. Rational Mech. Anal. 115 (1991) 15-59.
  • [41] S. Tolman, Examples of non-Kahler Hamiltonian torus actions, Invent. Math. 131 (1998) 299-310.