Journal of Differential Geometry

Higher direct images of log canonical divisors

Osamu Fujino

Abstract

In this paper, we investigate higher direct images of log canonical divisors. After we reformulate Kollár's torsion-free theorem, we treat the relationship between higher direct images of log canonical divisors and the canonical extensions of Hodge filtration of gradedly polarized variations of mixed Hodge structures. As a corollary, we obtain a logarithmic version of Fujita--Kawamata's semi-positivity theorem. The final section is an appendix, which is a result of Morihiko Saito.

Article information

Source
J. Differential Geom., Volume 66, Number 3 (2004), 453-479.

Dates
First available in Project Euclid: 18 October 2004

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1098137840

Digital Object Identifier
doi:10.4310/jdg/1098137840

Mathematical Reviews number (MathSciNet)
MR2106473

Zentralblatt MATH identifier
1072.14019

Citation

Fujino, Osamu. Higher direct images of log canonical divisors. J. Differential Geom. 66 (2004), no. 3, 453--479. doi:10.4310/jdg/1098137840. https://projecteuclid.org/euclid.jdg/1098137840


Export citation