Journal of Commutative Algebra

On canonical modules of idealizations

Nguyen Thi Hong Loan

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $(R,\mathfrak {m})$ be a Noetherian local ring which is a quotient of a Gorenstein local ring. Let $M$ be a finitely generated $R$-module. In this paper, we study the structure of the canonical module $K(R\ \mathbb {n}\ M)$ of the idealization $R\ \mathbb {n}\ M$ via the polynomial type introduced by Cuong~\cite {C}. In particular, we give a characterization for $K(R\ \mathbb {n}\ M)$ being Cohen-Macaulay and generalized Cohen-Macaulay.

Article information

Source
J. Commut. Algebra, Volume 9, Number 1 (2017), 107-117.

Dates
First available in Project Euclid: 5 April 2017

Permanent link to this document
https://projecteuclid.org/euclid.jca/1491379322

Digital Object Identifier
doi:10.1216/JCA-2017-9-1-107

Mathematical Reviews number (MathSciNet)
MR3631829

Zentralblatt MATH identifier
1365.13017

Subjects
Primary: 13C14: Cohen-Macaulay modules [See also 13H10] 13E05: Noetherian rings and modules

Keywords
Idealization Cohen-Macaulay canonical module generalized Cohen-Macaulay canonical module

Citation

Loan, Nguyen Thi Hong. On canonical modules of idealizations. J. Commut. Algebra 9 (2017), no. 1, 107--117. doi:10.1216/JCA-2017-9-1-107. https://projecteuclid.org/euclid.jca/1491379322


Export citation

References

  • D.D. Anderson and W. Winders, Idealization of a module, J. Commutative Algebra 1 (2009), 3–56.
  • M. Brodmann and R.Y. Sharp, Local cohomology, An algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.
  • ––––, On the dimension and multiplicity of local cohomology modules, Nagoya Math. J. 167 (2002), 217–233.
  • W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge University Press, Cambridge, 1993.
  • N.T. Cuong, On the least degree of polynomials bounding above the differences between lengths and multiplicities of certain systems of parameters in local rings, Nagoya Math. J. 125 (1992), 105–114.
  • A. Grothendieck, Local cohomology, Lect. Notes Math. 41, Springer Verlag, Berlin, 1967.
  • J. Herzog and E. Kunz, et al., Der kanonische modul eines Cohen-Macaulay-Rings, Lect. Notes Math. 238, Springer Verlag, Berlin, 1971.
  • M. Hochster, Contraced ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973), 25–43.
  • D. Kirby, Dimension and length of Artinian modules, Quart. J. Math. Oxford 41 (1990), 419–429.
  • N.T.H. Loan and L.T. Nhan, On generalized Cohen-Macaulay canonical modules, Comm. Algebra 41 (2013), 4453–4462.
  • H. Matsumura, Commutative rings theory, Cambridge University Press, Cambridge, 1986.
  • M. Nagata, Local rings, Tracts Pure Appl. Math. 13, 1962.
  • L.T. Nhan, A remark on the monomial conjecture and Cohen-Macaulay canonical modules, Proc. Amer. Math. Soc. 134 (2006), 2785–2794.
  • L.T. Nhan and T.N. An, On the unmixedness and universal catenaricity of local rings and local cohomology modules, J. Algebra 321 (2009), 303–311.
  • P. Schenzel, Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe, Lect. Notes Math. 907, Springer-Verlag, Berlin, 1982.
  • ––––, On birational macaulayfications and Cohen-Macaulay canonical modules, J. Algebra 275 (2004), 751–770.
  • K. Yamagishi, Idealizations of maximal Buchsbaum modules over a Buchsbaum ring, Math. Proc. Camb. Phil. Soc. 104 (1988), 451–478.