Journal of Commutative Algebra

Pseudo-convergent sequences and Prüfer domains of integer-valued polynomials

K. Alan Loper and Nicholas J. Werner

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let $K$ be a field with rank one valuation and $V$ the valuation domain of $K$. For a subset $E$ of $V$, the ring of integer-valued polynomials on $E$ is \[ \Int (E, V) = \{f \in K[x] \mid f(E) \subseteq V \}. \] A question of interest regarding $\Int (E, V)$ is: for which $E$ is $\Int (E, V)$ a Pr\"{u}fer domain? In this paper, we contribute a partial answer to this question. We classify exactly when $\Int (E, V)$ is Pr\"{u}fer in the case where the elements of $E$ comprise a pseudo-convergent sequence in $V$. Our work expands on earlier results that apply when $V$ is a discrete valuation domain.

Article information

J. Commut. Algebra, Volume 8, Number 3 (2016), 411-429.

First available in Project Euclid: 9 September 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 13F20: Polynomial rings and ideals; rings of integer-valued polynomials [See also 11C08, 13B25]
Secondary: 13F05: Dedekind, Prüfer, Krull and Mori rings and their generalizations

Integer-valued polynomial pseudo-convergent Prüfer domain


Loper, K. Alan; Werner, Nicholas J. Pseudo-convergent sequences and Prüfer domains of integer-valued polynomials. J. Commut. Algebra 8 (2016), no. 3, 411--429. doi:10.1216/JCA-2016-8-3-411.

Export citation


  • N. Bourbaki, General topology, Hermann, Paris, 1966 (in English).
  • D. Brizolis, A theorem on ideals in Prüfer rings of integral-valued polynomials, Comm. Alg. 7 (1979), 1065–1077.
  • P.-J. Cahen and J.-L. Chabert, Integer-valued polynomials, Amer. Math. Soc. Surv. Mono. 43, American Mathematical Society, Providence, 1997.
  • P.-J. Cahen, J.-L. Chabert and K.A. Loper, High dimension Prüfer domains of integer-valued polynomials, J. Korean Math. Soc. 38 (2001), 915–935.
  • J.-L. Chabert, Un anneaux de Prüfer, J. Algebra 107 (1987), 1–16.
  • R. Gilmer, Multiplicative ideal theory, Queen's Papers Pure Appl. Math. 90, Kingston, Ontario, Canada, 1992.
  • I. Kaplansky, Maximal fields with valuation, Duke Math. J. 9 (1942), 303–321.
  • K.A. Loper, A classification of all $D$ such that $\Int(D)$ is a Prüfer domain, Proc. Amer. Math. Soc. 126 (1998), 657–660.
  • D.L. McQuillan, On Prüfer domains of polynomials, J. reine angew. Math. 358 (1985), 162–178.
  • ––––, Rings of integer-valued polynomials determined by finite sets, Proc. Roy. Irish Acad. 85 (1985), 177–184.
  • A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper, Math. Z. 39 (1935), 269–404.
  • ––––, Über ganzwertige Polynome in algebraischen Zahlkörpen, J. reine angew. Math. 149 (1919), 117–124.
  • G. Pólya, Über ganzwertige Polynome in algebraischen Zahlkörpen, J. reine angew. Math. 149 (1919), 97–116.