Journal of Commutative Algebra

When is the complement of the zero-divisor graph of a commutative ring planar?

S. Visweswaran

Full-text: Open access

Abstract

Let $R$ be a commutative ring with identity admitting at least two distinct zero-divisors $a,b$ with $ab\neq 0$. In this article, necessary and sufficient conditions are determined in order that $(\Gamma(R))^{c}$ (that is, the complement of the zero-divisor graph of $R$) is planar. It is noted that, if $(\Gamma(R))^{c}$ is planar, then the number of maximal $N$-primes of $(0)$ in $R$ is at most three. Firstly, we consider rings $R$ admitting exactly three maximal $N$-primes of $(0)$ and present a characterization of such rings in order that the complement of their zero-divisor graphs be planar. Secondly, we consider rings $R$ admitting exactly two maximal $N$-primes of $(0)$ and investigate the problem of when the complement of their zero-divisor graphs is planar. Thirdly, we consider rings $R$ admitting only one maximal $N$-prime of $(0)$ and determine necessary and sufficient conditions in order that the complement of their zero-divisor graphs be planar.

Article information

Source
J. Commut. Algebra, Volume 5, Number 4 (2013), 567-601.

Dates
First available in Project Euclid: 31 January 2014

Permanent link to this document
https://projecteuclid.org/euclid.jca/1391192657

Digital Object Identifier
doi:10.1216/JCA-2013-5-4-567

Mathematical Reviews number (MathSciNet)
MR3161747

Zentralblatt MATH identifier
1299.13006

Subjects
Primary: 13A15: Ideals; multiplicative ideal theory

Keywords
The complement of the zero-divisor graph maximal $N$-primes of (0)

Citation

Visweswaran, S. When is the complement of the zero-divisor graph of a commutative ring planar?. J. Commut. Algebra 5 (2013), no. 4, 567--601. doi:10.1216/JCA-2013-5-4-567. https://projecteuclid.org/euclid.jca/1391192657


Export citation

References

  • S. Akbari, H.R. Maimani and S. Yassemi, When a zero-divisor graph is planar or complete $r$-partite graph, J. Algebra 270 (2003), 169-180.
  • D.D. Anderson and M. Nasser, Beck's coloring of a commutative ring, J. Algebra 159 (1993), 500-514.
  • D.F. Anderson, M.C. Axtell and J.A. Stickles, Jr., Zero-divisor graphs in commutative rings, in Commutative algebra, Noetherian and non-Noetherian perspectives, M. Fontana, et al., eds., Springer-Verlag, New York, 2011.
  • D.F. Anderson, A. Frazier, A. Lauve and P.S. Livingston, The zero-divisor graph of a commutative ring, II, in Ideal theoretic methods in commutative algebra, Lect. Notes Pure Appl. Math. 220, Dekker, New York, 2001.
  • D.F. Anderson, and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447.
  • M.F. Atiyah and I.G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, Massachusetts, 1969.
  • R. Balakrishnan and K. Ranganathan, A textbook of graph theory, Universitext, Springer, New York, 2000.
  • I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226.
  • R. Belshoff and J. Chapman, Planar zero-divisor graphs, J. Algebra 316 (2007), 471-480.
  • B. Corbus and G.D. Williams, Rings of order $p^{5}$, Part II. Local rings, J. Algebra 231 (2000), 691-704.
  • N. Deo, Graph theory with applications to engineering and computer science, Prentice-Hall of India Private Limited, New Delhi, 1994.
  • N. Ganesan, Properties of rings with a finite number of zero-divisors, Math. Ann. 157 (1964), 215-218.
  • W. Heinzer and J. Ohm, On the Noetherian-like rings of E.G. Evans, Proc. Amer. Math. Soc. 34 (1972), 73-74.
  • I. Kaplansky, Commutative rings, The University of Chicago Press, Chicago, 1974.
  • N.O. Smith, Planar zero-divisor graphs, Int. J. Commut. Rings 2 (2003), 177-188.
  • –––, Infinite planar zero-divisor graphs, Comm. Alg. 35 (2007), 171-180.
  • S. Visweswaran, Some properties of the complement of the zero-divisor graph of a commutative ring, ISRN Algebra 2011 (2011), Article ID 591041, 24 pages. \noindentstyle