Journal of Commutative Algebra

Solvable infinite filiform Lie algebras

Clas Löfwall

Full-text: Open access

Article information

Source
J. Commut. Algebra, Volume 2, Number 4 (2010), 429-436.

Dates
First available in Project Euclid: 13 December 2010

Permanent link to this document
https://projecteuclid.org/euclid.jca/1292249705

Digital Object Identifier
doi:10.1216/JCA-2010-2-4-429

Mathematical Reviews number (MathSciNet)
MR2753716

Zentralblatt MATH identifier
1236.17035

Citation

Löfwall, Clas. Solvable infinite filiform Lie algebras. J. Commut. Algebra 2 (2010), no. 4, 429--436. doi:10.1216/JCA-2010-2-4-429. https://projecteuclid.org/euclid.jca/1292249705


Export citation

References

  • F. Bratzlavsky, Classification des algèbres de Lie nilpotentes de dimension $n$, de classe $n-1$, dont l'idéal dérivé est commutatif, Acad. Roy. Belg. Bull. Cl. Sci. 560 (1974), 858-865.
  • A. Fialowski, On the classification of graded Lie algebras with two generators, Moscow Univ. Math. Bull. 38 (1983), 76-79.
  • J.R. Gómez, A. Jimenéz-Merchán and Y. Khakimdjanov, Low-dimensional filiform Lie algebras, J. Pure Appl. Algebra 130 (1998), 133-158.
  • D.V. Millionshchikov, The variety of Lie algebras of maximal class, arXiv :0904.3181v1 [math.RA] 21 Apr 2009.
  • A. Shalev and E.I. Zelmanov, Narrow Lie algebras: A coclass theory and a characterization of the Witt algebra, J. Algebra 189 (1997), 294-331.
  • M. Vergne, Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes, Bull. S.M.F. 98 (1970), 81-116.