## Journal of Applied Probability

- J. Appl. Probab.
- Volume 49, Number 3 (2012), 888-894.

### A branching process for virus survival

J. Theodore Cox and Rinaldo B. Schinazi

#### Abstract

Quasispecies theory predicts that there is a critical mutation probability above which a viral population will go extinct. Above this threshold the virus loses the ability to replicate the best-adapted genotype, leading to a population composed of low replicating mutants that is eventually doomed. We propose a new branching model that shows that this is not necessarily so. That is, a population composed of ever changing mutants may survive.

#### Article information

**Source**

J. Appl. Probab., Volume 49, Number 3 (2012), 888-894.

**Dates**

First available in Project Euclid: 6 September 2012

**Permanent link to this document**

https://projecteuclid.org/euclid.jap/1346955342

**Digital Object Identifier**

doi:10.1239/jap/1346955342

**Mathematical Reviews number (MathSciNet)**

MR3012108

**Zentralblatt MATH identifier**

1277.60186

**Subjects**

Primary: 60K37: Processes in random environments

Secondary: 92D25: Population dynamics (general)

**Keywords**

Quasispecies branching process random environment evolution

#### Citation

Cox, J. Theodore; Schinazi, Rinaldo B. A branching process for virus survival. J. Appl. Probab. 49 (2012), no. 3, 888--894. doi:10.1239/jap/1346955342. https://projecteuclid.org/euclid.jap/1346955342