## Journal of Applied Mathematics

- J. Appl. Math.
- Volume 2019 (2019), Article ID 3456848, 7 pages.

### A Truncation Method for Solving the Time-Fractional Benjamin-Ono Equation

**Full-text: Access denied (no subscription detected) **

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

#### Abstract

We deem the time-fractional Benjamin-Ono (BO) equation out of the Riemann–Liouville (RL) derivative by applying the Lie symmetry analysis (LSA). By first using prolongation theorem to investigate its similarity vectors and then using these generators to transform the time-fractional BO equation to a nonlinear ordinary differential equation (NLODE) of fractional order, we complete the solutions by utilizing the power series method (PSM).

#### Article information

**Source**

J. Appl. Math., Volume 2019 (2019), Article ID 3456848, 7 pages.

**Dates**

Received: 12 December 2018

Revised: 2 March 2019

Accepted: 25 March 2019

First available in Project Euclid: 24 July 2019

**Permanent link to this document**

https://projecteuclid.org/euclid.jam/1563933633

**Digital Object Identifier**

doi:10.1155/2019/3456848

**Mathematical Reviews number (MathSciNet)**

MR3949343

#### Citation

Ali, Mohamed R. A Truncation Method for Solving the Time-Fractional Benjamin-Ono Equation. J. Appl. Math. 2019 (2019), Article ID 3456848, 7 pages. doi:10.1155/2019/3456848. https://projecteuclid.org/euclid.jam/1563933633

#### References

- M. Bruzon et al., “The symmetry reductions of a turbulence model,”
*Journal of Physics A: Mathematical and General*, vol. 34, no. 18, p. 3751, 2001. - R. Sadat and M. Kassem, “Explicit Solutions for the (2+ 1)-dimensional jaulent–miodek equation using the integrating factors method in an unbounded domain,”
*Mathematical & Computational Applications*, vol. 23, no. 1, p. 15, 2018. - A. Paliathanasis and M. Tsamparlis, “Lie symmetries for systems of evolution equations,”
*Journal of Geometry and Physics*, vol. 124, pp. 165–169, 2018.Mathematical Reviews (MathSciNet): MR3754503

Zentralblatt MATH: 1388.53018

Digital Object Identifier: doi:10.1016/j.geomphys.2017.10.014 - Y. Y. Zhang, X. Q. Liu, and G. W. Wang, “Symmetry reductions and exact solutions of the (2+ 1)-dimensional Jaulent–Miodek equation,”
*Applied Mathematics and Computation*, vol. 219, no. 3, pp. 911–916, 2012.Mathematical Reviews (MathSciNet): MR2981283

Digital Object Identifier: doi:10.1016/j.amc.2012.06.069 - M. Mirzazadeh and M. Eslami, “Exact solutions of the Kudryashov-Sinelshchikov equation and nonlinear telegraph equation via the first integral method,”
*Nonlinear Analysis: Modelling and Control*, vol. 17, no. 4, pp. 481–488, 2012.Mathematical Reviews (MathSciNet): MR3009934

Zentralblatt MATH: 1291.35124

Digital Object Identifier: doi:10.15388/NA.17.4.14052 - M. Mirzazadeh, M. Eslami, A. H. Bhrawy, B. Ahmed, and A. Biswas, “Solitons and other solutions to complex-valued Klein-Gordon equation in $\Phi $-4 field theory,”
*Applied Mathematics & Information Sciences*, vol. 9, no. 6, pp. 2793–2801, 2015. - A. Nazarzadeh, M. Eslami, and M. Mirzazadeh, “Exact solutions of some nonlinear partial differential equations using functional variable method,”
*Pramana–-Journal of Physics*, vol. 81, no. 2, pp. 225–236, 2013. - M. Eslami, A. Neyrame, and M. Ebrahimi, “Explicit solutions of nonlinear (2+1)-dimensional dispersive long wave equation,”
*Journal of King Saud University - Science*, vol. 24, no. 1, pp. 69–71, 2012. - M. Mirzazadeh, M. Eslami, and A. H. Arnous, “Dark optical solitons of Biswas-Milovic equation with dual-power law nonlinearity,”
*The European Physical Journal Plus*, vol. 130, 4, no. 1, 2015. - E. Aksoy, M. Kaplan, and A. Bekir, “Exponential rational function method for space-time fractional differential equations,”
*Waves in random and complex media : propagation, scattering and imaging.*, vol. 26, no. 2, pp. 142–151, 2016.Mathematical Reviews (MathSciNet): MR3474014

Digital Object Identifier: doi:10.1080/17455030.2015.1125037 - A. Bekir and A. C. Cevikel, “New exact travelling wave solutions of nonlinear physical models,”
*Chaos, Solitons and Fractals*, vol. 41, no. 4, pp. 1733–1739, 2009.Mathematical Reviews (MathSciNet): MR2537778

Digital Object Identifier: doi:10.1016/j.chaos.2008.07.017 - M. Eslami, M. Mirzazadeh, B. Fathi Vajargah, and A. Biswas, “Optical solitons for the resonant nonlinear Schrödinger's equation with time-dependent coefficients by the first integral method,”
*Optik - International Journal for Light and Electron Optics*, vol. 125, no. 13, pp. 3107–3116, 2014. - M. F. El-Sabbagh, R. Zait, and R. M. Abdelazeem, “New exact solutions of some nonlinear partial differential equations via the improved exp-function method,”
*IJRRAS*, vol. 18, no. 2, pp. 132–144, 2014. - Y. Gurefe, E. Misirli, A. Sonmezoglu, and M. Ekici, “Extended trial equation method to generalized nonlinear partial differential equations,”
*Applied Mathematics and Computation*, vol. 219, no. 10, pp. 5253–5260, 2013.Mathematical Reviews (MathSciNet): MR3009484

Zentralblatt MATH: 1284.35371

Digital Object Identifier: doi:10.1016/j.amc.2012.11.046 - A. H. Khater, M. H. Moussa, and S. F. Abdul-Aziz, “Invariant variational principles and conservation laws for some nonlinear partial differential equations with constant coefficients - I,”
*Chaos, Solitons and Fractals*, vol. 14, no. 9, pp. 1389–1401, 2002.Mathematical Reviews (MathSciNet): MR1924658

Digital Object Identifier: doi:10.1016/S0960-0779(02)00060-7 - Q. Feng and F. Meng, “Traveling wave solutions for fractional partial differential equations arising in mathematical physics by an improved fractional Jacobi elliptic equation method,”
*Mathematical Methods in the Applied Sciences*, vol. 40, no. 10, pp. 3676–3686, 2017.Mathematical Reviews (MathSciNet): MR3664602

Zentralblatt MATH: 1370.35073

Digital Object Identifier: doi:10.1002/mma.4254 - R. K. Gazizov, A. A. Kasatkin, and S. Y. Lukashchuk, “Continuous transformation groups of fractional differential equations,”
*Vestnik Usatu*, vol. 9, no. 3, p. 21, 2007.Mathematical Reviews (MathSciNet): MR3429932 - S. Zhang and H. Q. Zhang, “Fractional sub-equation method and its applications to nonlinear fractional PDEs,”
*Physics Letters A*, vol. 375, no. 7, pp. 1069–1073, 2011.Mathematical Reviews (MathSciNet): MR2765013

Zentralblatt MATH: 1242.35217

Digital Object Identifier: doi:10.1016/j.physleta.2011.01.029 - B. Zheng, “A new fractional Jacobi elliptic equation method for solving fractional partial differential equations,”
*Advances in Difference Equations*, vol. 2014, no. 1, p. 228, 2014.Mathematical Reviews (MathSciNet): MR3347742 - A. Neyrame, A. Roozi, S. S. Hosseini, and S. M. Shafiof, “Exact travelling wave solutions for some nonlinear partial differential equations,”
*Journal of King Saud University - Science*, vol. 22, no. 4, pp. 275–278, 2010. - K. B. Oldham and J. Spanier,
*The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order*, vol. 111, Academic Press, New York, NY, USA, London, UK, 1974. - B. Ahmad, S. K. Ntouyas, and A. Alsaedi, “On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions,”
*Chaos, Solitons & Fractals*, vol. 83, pp. 234–241, 2016. - V. S. Kiryakova,
*Generalized Fractional Calculus and Applications*, CRC press, Botan Roca, Fl, USA, 1993.Zentralblatt MATH: 0882.26003 - G.-W. Wang, X.-Q. Liu, and Y.-Y. Zhang, “Lie symmetry analysis to the time fractional generalized fifth-order KdV equation,”
*Communications in Nonlinear Science and Numerical Simulation*, vol. 18, no. 9, pp. 2321–2326, 2013. - S. S. Ray and S. Sahoo, “Invariant analysis and conservation laws of (2+ 1) dimensional time-fractional ZKBBM equation in gravity water waves,”
*Computers & Mathematics with Applications*, 2017. - G.-W. Wang and T.-Z. Xu, “Invariant analysis and exact solutions of nonlinear time fractional Sharma-Tasso-Olver equation by Lie group analysis,”
*Nonlinear Dynamics*, vol. 76, no. 1, pp. 571–580, 2014.Mathematical Reviews (MathSciNet): MR3189193

Zentralblatt MATH: 1319.35291

Digital Object Identifier: doi:10.1007/s11071-013-1150-y - M. Inc, A. Yusuf, A. I. Aliyu, and D. Baleanu, “Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations,”
*Physica A: Statistical Mechanics and its Applications*, vol. 496, pp. 371–383, 2018. \endinputMathematical Reviews (MathSciNet): MR3759755

Digital Object Identifier: doi:10.1016/j.physa.2017.12.119

### More like this

- Fractional Cauchy Problem with Riemann-Liouville Derivative on Time Scales

Wu, Ling and Zhu, Jiang, Abstract and Applied Analysis, 2013 - Exact Solutions of the Space-Time Fractional Bidirectional Wave Equations Using the
(
G
′
/
G
)
-Expansion Method

Li, Wei, Yang, Huizhang, and He, Bin, Journal of Applied Mathematics, 2014 - Improved (
G
′
/
G
)-Expansion Method for the Space and Time Fractional Foam Drainage and KdV Equations

Akgül, Ali, Kılıçman, Adem, and Inc, Mustafa, Abstract and Applied Analysis, 2013

- Fractional Cauchy Problem with Riemann-Liouville Derivative on Time Scales

Wu, Ling and Zhu, Jiang, Abstract and Applied Analysis, 2013 - Exact Solutions of the Space-Time Fractional Bidirectional Wave Equations Using the
(
G
′
/
G
)
-Expansion Method

Li, Wei, Yang, Huizhang, and He, Bin, Journal of Applied Mathematics, 2014 - Improved (
G
′
/
G
)-Expansion Method for the Space and Time Fractional Foam Drainage and KdV Equations

Akgül, Ali, Kılıçman, Adem, and Inc, Mustafa, Abstract and Applied Analysis, 2013 - Lie Group Analysis and Similarity Solutions for Mixed Convection Boundary Layers in the Stagnation-Point Flow toward a Stretching Vertical Sheet

Seddighi Chaharborj, Sarkhosh, Ismail, Fudziah, Gheisari, Yousof, Seddighi Chaharborj, Reza, Abu Bakar, Mohd Rizam, and Abdul Majid, Zanariah, Abstract and Applied Analysis, 2013 - Lie and Riccati Linearization of a Class of Liénard Type
Equations

Johnpillai, A. G., Khalique, C. M., and Mahomed, F. M., Journal of Applied Mathematics, 2012 - Benjamin-Ono-Burgers-MKdV Equation for Algebraic Rossby Solitary Waves in Stratified Fluids and Conservation Laws

Yang, Hongwei, Jin, Shanshan, and Yin, Baoshu, Abstract and Applied Analysis, 2014 - Power Series Solution for Solving Nonlinear Burgers-Type Equations

López-Sandoval, E., Mello, A., Godina-Nava, J. J., and Samana, A. R., Abstract and Applied Analysis, 2015 - Numerical Solutions for the Time and Space Fractional Nonlinear Partial Differential Equations

Gepreel, Khaled A., Nofal, Taher A., and Alotaibi, Fawziah M., Journal of Applied Mathematics, 2013 - The Bernstein Operational Matrices for Solving the Fractional Quadratic Riccati Differential Equations with the Riemann-Liouville Derivative

Baleanu, Dumitru, Alipour, Mohsen, and Jafari, Hossein, Abstract and Applied Analysis, 2013 - On the Solutions Fractional Riccati Differential Equation with Modified Riemann-Liouville Derivative

Merdan, Mehmet, International Journal of Differential Equations, 2012