Journal of Applied Mathematics

Trigonometric Regression for Analysis of Public Health Surveillance Data

Steven E. Rigdon, George Turabelidze, and Ehsan Jahanpour

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Statistical challenges in monitoring modern biosurveillance data are well described in the literature. Even though assumptions of normality, independence, and stationarity are typically violated in the biosurveillance data, statistical process control (SPC) charts adopted from industry have been widely used in public health for communicable disease monitoring. But, blind usage of SPC charts in public health that ignores the characteristics of disease surveillance data may result in poor detection of disease outbreaks and/or excessive false-positive alarms. Thus, improved biosurveillance systems are clearly needed, and participation of statisticians knowledgeable in SPC alongside epidemiologists in the design and evaluation of such systems can be more productive. We describe and study a method for monitoring reportable disease counts using a Poisson distribution whose mean is allowed to vary depending on the week of the year. The seasonality is modeled by a trigonometric function whose parameters can be estimated by some baseline set of data. We study the ability of such a model to detect an outbreak. Specifically, we estimate the probability of detection (POD), the average number of weeks to signal given that a signal has occurred (conditional expected delay, or CED), and the false-positive rate (FPR, the average number of false-alarms per year).

Article information

Source
J. Appl. Math., Volume 2014 (2014), Article ID 673293, 13 pages.

Dates
First available in Project Euclid: 2 March 2015

Permanent link to this document
https://projecteuclid.org/euclid.jam/1425306057

Digital Object Identifier
doi:10.1155/2014/673293

Citation

Rigdon, Steven E.; Turabelidze, George; Jahanpour, Ehsan. Trigonometric Regression for Analysis of Public Health Surveillance Data. J. Appl. Math. 2014 (2014), Article ID 673293, 13 pages. doi:10.1155/2014/673293. https://projecteuclid.org/euclid.jam/1425306057


Export citation