Journal of Applied Mathematics

New Exact Solutions for High Dispersive Cubic-Quintic Nonlinear Schrödinger Equation

Yongan Xie and Shengqiang Tang

Full-text: Open access

Abstract

We study a class of high dispersive cubic-quintic nonlinear Schrödinger equations, which describes the propagation of femtosecond light pulses in a medium that exhibits a parabolic nonlinearity law. Applying bifurcation theory of dynamical systems and the Fan sub-equations method, more types of exact solutions, particularly solitary wave solutions, are obtained for the first time.

Article information

Source
J. Appl. Math., Volume 2014 (2014), Article ID 826746, 7 pages.

Dates
First available in Project Euclid: 2 March 2015

Permanent link to this document
https://projecteuclid.org/euclid.jam/1425305945

Digital Object Identifier
doi:10.1155/2014/826746

Mathematical Reviews number (MathSciNet)
MR3248924

Citation

Xie, Yongan; Tang, Shengqiang. New Exact Solutions for High Dispersive Cubic-Quintic Nonlinear Schrödinger Equation. J. Appl. Math. 2014 (2014), Article ID 826746, 7 pages. doi:10.1155/2014/826746. https://projecteuclid.org/euclid.jam/1425305945


Export citation