## Journal of Applied Mathematics

- J. Appl. Math.
- Volume 2014 (2014), Article ID 578362, 8 pages.

### Exact Solutions for a New Nonlinear KdV-Like Wave Equation Using Simplest Equation Method and Its Variants

Yinghui He, Yun-Mei Zhao, and Yao Long

**Full-text: Open access**

#### Abstract

The simplest equation method presents wide applicability to the handling of nonlinear wave equations. In this paper, we focus on the exact solution of a new nonlinear KdV-like wave equation by means of the simplest equation method, the modified simplest equation method and, the extended simplest equation method. The KdV-like wave equation was derived for solitary waves propagating on an interface (liquid-air) with wave motion induced by a harmonic forcing which is more appropriate for the study of thin film mass transfer. Thus finding the exact solutions of this equation is of great importance and interest. By these three methods, many new exact solutions of this equation are obtained.

#### Article information

**Source**

J. Appl. Math., Volume 2014 (2014), Article ID 578362, 8 pages.

**Dates**

First available in Project Euclid: 2 March 2015

**Permanent link to this document**

https://projecteuclid.org/euclid.jam/1425305851

**Digital Object Identifier**

doi:10.1155/2014/578362

**Mathematical Reviews number (MathSciNet)**

MR3228133

#### Citation

He, Yinghui; Zhao, Yun-Mei; Long, Yao. Exact Solutions for a New Nonlinear KdV-Like Wave Equation Using Simplest Equation Method and Its Variants. J. Appl. Math. 2014 (2014), Article ID 578362, 8 pages. doi:10.1155/2014/578362. https://projecteuclid.org/euclid.jam/1425305851

#### References

- M. J. Ablowitz and P. A. Clarkson,
*Solitons, Nonlinear Evolution Equations and Inverse Scattering*, Cambridge University Press, New York, NY, USA, 1991.Mathematical Reviews (MathSciNet): MR1149378 - V. B. Matveev and M. A. Salle,
*Darboux Transformations and Solitons*, Springer, Berlin, Gemany, 1991.Mathematical Reviews (MathSciNet): MR1146435 - R. Hirota, “Exact solution of the korteweg–-de vries equation for multiple Collisions of solitons,”
*Physical Review Letters*, vol. 27, no. 18, pp. 1192–1194, 1971. - M. Wang, Y. Zhou, and Z. Li, “Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics,”
*Physics Letters, Section A: General, Atomic and Solid State Physics*, vol. 216, no. 1–5, pp. 67–75, 1996. - S. Liu, Z. Fu, and Q. Zhao, “Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations,”
*Physics Letters A*, vol. 289, no. 1-2, pp. 69–74, 2001.Mathematical Reviews (MathSciNet): MR1862082

Digital Object Identifier: doi:10.1016/S0375-9601(01)00580-1 - E. J. Parkes and B. R. Duffy, “An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations,”
*Computer Physics Communications*, vol. 98, no. 3, pp. 288–300, 1996. - J. He and X. Wu, “Exp-function method for nonlinear wave equations,”
*Chaos, Solitons and Fractals*, vol. 30, no. 3, pp. 700–708, 2006.Mathematical Reviews (MathSciNet): MR2238695 - M. Wang, X. Li, and J. Zhang, “The ${G }^{\prime }/G$-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics,”
*Physics Letters. A*, vol. 372, no. 4, pp. 417–423, 2008.Mathematical Reviews (MathSciNet): MR2381823

Digital Object Identifier: doi:10.1016/j.physleta.2007.07.051 - S. Guo and Y. Zhou, “The extended ${G}^{\prime }/G$-expansion method and its applications to the Whitham-Broer-Kaup-like equations and coupled Hirota-Satsuma KDV equations,”
*Applied Mathematics and Computation*, vol. 215, no. 9, pp. 3214–3221, 2010.Mathematical Reviews (MathSciNet): MR2576809

Digital Object Identifier: doi:10.1016/j.amc.2009.10.008 - M. V. Demina and N. A. Kudryashov, “From Laurent series to exact meromorphic solutions: the Kawahara equation,”
*Physics Letters A*, vol. 374, no. 39, pp. 4023–4029, 2010.Mathematical Reviews (MathSciNet): MR2683992

Digital Object Identifier: doi:10.1016/j.physleta.2010.08.013 - M. V. Demina and N. A. Kudryashov, “Explicit expressions for meromorphic solutions of autonomous nonlinear ordinary differential equations,”
*Communications in Nonlinear Science and Numerical Simulation*, vol. 16, no. 3, pp. 1127–1134, 2011.Mathematical Reviews (MathSciNet): MR2736620

Digital Object Identifier: doi:10.1016/j.cnsns.2010.06.035 - N. Jamshidi and D. D. Ganji, “Application of energy balance method and variational iteration method to an oscillation of a mass attached to a stretched elastic wire,”
*Current Applied Physics*, vol. 10, no. 2, pp. 484–486, 2010. - M. Rafei, H. Daniali, and D. D. Ganji, “Variational interation method for solving the epidemic model and the prey and predator problem,”
*Applied Mathematics and Computation*, vol. 186, no. 2, pp. 1701–1709, 2007.Mathematical Reviews (MathSciNet): MR2319067

Digital Object Identifier: doi:10.1016/j.amc.2006.08.077 - F. Fouladi, E. Hosseinzadeh, A. Barari, and G. Domairry, “Highly nonlinear temperature-dependent fin analysis by variational iteration method,”
*Heat Transfer Research*, vol. 41, no. 2, pp. 155–165, 2010. - M. Esmaeilpour and D. D. Ganji, “Application of He\textquotesingle s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate,”
*Physics Letters A*, vol. 372, no. 1, pp. 33–38, 2007.Mathematical Reviews (MathSciNet): MR2414673

Digital Object Identifier: doi:10.1016/j.physleta.2007.07.002 - D. D. Ganji, M. J. Hosseini, and J. Shayegh, “Some nonlinear heat transfer equations solved by three approximate methods,”
*International Communications in Heat and Mass Transfer*, vol. 34, no. 8, pp. 1003–1016, 2007. - Z. Z. Ganji, D. D. Ganji, and M. Esmaeilpour, “Study on nonlinear Jeffery-Hamel flow by He\textquotesingle s semi-analytical methods and comparison with numerical results,”
*Computers & Mathematics with Applications*, vol. 58, no. 11-12, pp. 2107–2116, 2009.Mathematical Reviews (MathSciNet): MR2557335 - S. H. H. Nia, A. N. Ranjbar, D. D. Ganji, H. Soltani, and J. Ghasemi, “Maintaining the stability of nonlinear differential equations by the enhancement of HPM,”
*Physics Letters A: General, Atomic and Solid State Physics*, vol. 372, no. 16, pp. 2855–2861, 2008. - M. Omidvar, A. Barari, M. Momeni, and D. Ganji, “New class of solutions for water infiltration problems in unsaturated soils,”
*Geomechanics and Geoengineering*, vol. 5, no. 2, pp. 127–135, 2010. - E. Fan, “Uniformly constructing a series of explicit exact solu-tions to nonlinear equations in mathematical physics,”
*Chaos, Solitons and Fractals*, vol. 16, no. 5, pp. 819–839, 2003.Mathematical Reviews (MathSciNet): MR1964991

Zentralblatt MATH: 1030.35136

Digital Object Identifier: doi:10.1016/S0960-0779(02)00472-1 - N. A. Kudryashov, “Exact solitary waves of the Fisher equation,”
*Physics Letters A*, vol. 342, no. 1-2, pp. 99–106, 2005.Mathematical Reviews (MathSciNet): MR2152840

Zentralblatt MATH: 1222.35054

Digital Object Identifier: doi:10.1016/j.physleta.2005.05.025 - N. A. Kudryashov, “Simplest equation method to look for exact solutions of nonlinear differential equations,”
*Chaos, Solitons and Fractals*, vol. 24, no. 5, pp. 1217–1231, 2005.Mathematical Reviews (MathSciNet): MR2123270

Zentralblatt MATH: 1069.35018

Digital Object Identifier: doi:10.1016/j.chaos.2004.09.109 - A. J. Mohamad Jawad, M. D. Petkovic, and A. Biswas, “Modified simple equation method for nonlinear evolution equations,”
*Applied Mathematics and Computation*, vol. 217, no. 2, pp. 869–877, 2010.Mathematical Reviews (MathSciNet): MR2678603

Digital Object Identifier: doi:10.1016/j.amc.2010.06.030 - N. A. Kudryashov and N. B. Loguinova, “Extended simplest equation method for nonlinear differential equations,”
*Applied Mathematics and Computation*, vol. 205, no. 1, pp. 396–402, 2008.Mathematical Reviews (MathSciNet): MR2466644

Zentralblatt MATH: 1168.34003

Digital Object Identifier: doi:10.1016/j.amc.2008.08.019 - E. M. E. Zayed and S. A. H. Ibrahim, “Exact solutions of non-linear evolution equations in mathematical physics using the modified simple equation method,”
*Chinese Physics Letters*, vol. 29, no. 6, Article ID 060201, 2012. - S. Bilige and T. Chaolu, “An extended simplest equation method and its application to several forms of the fifth-order KdV equation,”
*Applied Mathematics and Computation*, vol. 216, no. 11, pp. 3146–3153, 2010.Mathematical Reviews (MathSciNet): MR2653131

Zentralblatt MATH: 1195.35257

Digital Object Identifier: doi:10.1016/j.amc.2010.04.029 - S. Bilige, T. Chaolu, and X. Wang, “Application of the extended simplest equation method to the coupled Schrödinger-Boussinesq equation,”
*Applied Mathematics and Computation*, vol. 224, pp. 517–523, 2013.Mathematical Reviews (MathSciNet): MR3127641

Digital Object Identifier: doi:10.1016/j.amc.2013.08.083 - J. M. Rees and W. B. Zimmerman, “An intermediate wavelength, weakly nonlinear theory for the evolution of capillary gravity waves,”
*Wave Motion*, vol. 48, no. 8, pp. 707–716, 2011.Mathematical Reviews (MathSciNet): MR2853735

Digital Object Identifier: doi:10.1016/j.wavemoti.2011.03.006 - A. Sohail, J. M. Rees, and W. B. Zimmerman, “Analysis of capillary-gravity waves using the discrete periodic inverse scattering transform,”
*Colloids and Surfaces A: Physicochemical and Engineering Aspects*, vol. 391, no. 1–3, pp. 42–50, 2011. - A. Sohail, K. Maqbool, and T. Hayat, “Painlevé property and approximate solutions using Adomian decomposition for a nonlinear KdV-like wave equation,”
*Applied Mathematics and Computation*, vol. 229, pp. 359–366, 2014. \endinputMathematical Reviews (MathSciNet): MR3159883

Digital Object Identifier: doi:10.1016/j.amc.2013.12.056

### More like this

- New Exact Solutions of Ion-Acoustic Wave Equations by (G′/G)-Expansion Method

Taha, Wafaa M., Noorani, M. S. M., and Hashim, I., Journal of Applied Mathematics, 2013 - Functional Variable Method for conformable fractional modified KdV-ZK equation and Maccari system

Çenesiz, Yücel, Tasbozan, Orkun, and Kurt, Ali, Tbilisi Mathematical Journal, 2017 - A New Fractional Subequation Method and Its Applications for Space-Time Fractional Partial Differential Equations

Meng, Fanwei and Feng, Qinghua, Journal of Applied Mathematics, 2013

- New Exact Solutions of Ion-Acoustic Wave Equations by (G′/G)-Expansion Method

Taha, Wafaa M., Noorani, M. S. M., and Hashim, I., Journal of Applied Mathematics, 2013 - Functional Variable Method for conformable fractional modified KdV-ZK equation and Maccari system

Çenesiz, Yücel, Tasbozan, Orkun, and Kurt, Ali, Tbilisi Mathematical Journal, 2017 - A New Fractional Subequation Method and Its Applications for Space-Time Fractional Partial Differential Equations

Meng, Fanwei and Feng, Qinghua, Journal of Applied Mathematics, 2013 - The Simplest Equation Method and Its Application for Solving the Nonlinear NLSE, KGZ, GDS, DS, and GZ Equations

Zhao, Yun-Mei, He, Ying-Hui, and Long, Yao, Journal of Applied Mathematics, 2013 - Three Different Methods for New Soliton Solutions of the Generalized NLS Equation

Jawad, Anwar Ja’afar Mohamad, Abstract and Applied Analysis, 2017 - Exact Solutions for Nonlinear Differential Difference Equations in
Mathematical Physics

Gepreel, Khaled A., Nofal, Taher A., and Alotaibi, Fawziah M., Abstract and Applied Analysis, 2013 - Exact Solutions of a High-Order Nonlinear Wave Equation of Korteweg-de Vries Type under Newly Solvable Conditions

Rui, Weiguo, Abstract and Applied Analysis, 2014 - Dissipative Nonlinear Schrödinger Equation for Envelope Solitary Rossby Waves with Dissipation Effect in Stratified Fluids and Its Solution

Shi, Yunlong, Yin, Baoshu, Yang, Hongwei, Yang, Dezhou, and Xu, Zhenhua, Abstract and Applied Analysis, 2014 - A New Auto-Bäcklund Transformation of the KdV Equation with General Variable Coefficients and Its Application

Liu, Chunping, Abstract and Applied Analysis, 2014 - New Application of the
(
G
′
/
G
)
-Expansion Method for Thin Film Equations

Taha, Wafaa M., Noorani, M. S. M., and Hashim, I., Abstract and Applied Analysis, 2013