Journal of Applied Mathematics

A New Trigonometrically Fitted Two-Derivative Runge-Kutta Method for the Numerical Solution of the Schrödinger Equation and Related Problems

Yanwei Zhang, Haitao Che, Yonglei Fang, and Xiong You

Full-text: Open access

Abstract

A new trigonometrically fitted fifth-order two-derivative Runge-Kutta method with variable nodes is developed for the numerical solution of the radial Schrödinger equation and related oscillatory problems. Linear stability and phase properties of the new method are examined. Numerical results are reported to show the robustness and competence of the new method compared with some highly efficient methods in the recent literature.

Article information

Source
J. Appl. Math., Volume 2013 (2013), Article ID 937858, 9 pages.

Dates
First available in Project Euclid: 14 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.jam/1394808265

Digital Object Identifier
doi:10.1155/2013/937858

Mathematical Reviews number (MathSciNet)
MR3138956

Zentralblatt MATH identifier
06950944

Citation

Zhang, Yanwei; Che, Haitao; Fang, Yonglei; You, Xiong. A New Trigonometrically Fitted Two-Derivative Runge-Kutta Method for the Numerical Solution of the Schrödinger Equation and Related Problems. J. Appl. Math. 2013 (2013), Article ID 937858, 9 pages. doi:10.1155/2013/937858. https://projecteuclid.org/euclid.jam/1394808265


Export citation

References

  • L. G. Ixaru and M. Rizea, “A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies,” Computer Physics Communications, vol. 19, no. 1, pp. 23–27, 1980.
  • T. E. Simos, “A family of fifth algebraic order trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation,” Computational Materials Science, vol. 34, no. 4, pp. 342–354, 2005.
  • H. van de Vyver, “An embedded phase-fitted modified Runge-Kutta method for the numerical integration of the radial Schrödinger equation,” Physics Letters A, vol. 352, no. 4-5, pp. 278–285, 2006.
  • T. E. Simos, “An embedded Runge-Kutta method with phase-lag of order infinity for the numerical solution of the Schrödinger equation,” International Journal of Modern Physics C, vol. 11, no. 6, pp. 1115–1133, 2000.
  • T. E. Simos and J. V. Aguiar, “A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation,” Journal of Mathematical Chemistry, vol. 30, no. 1, pp. 121–131, 2001.
  • Z. Kalogiratou, Th. Monovasilis, and T. E. Simos, “Computation of the eigenvalues of the Schrödinger equation by exponentially-fitted Runge-Kutta-Nyström methods,” Computer Physics Communications, vol. 180, no. 2, pp. 167–176, 2009.
  • A. A. Kosti, Z. A. Anastassi, and T. E. Simos, “Construction of an optimized explicit Runge-Kutta-Nyström method for the numerical solution of oscillatory initial value problems,” Computers & Mathematics with Applications, vol. 61, no. 11, pp. 3381–3390, 2011.
  • A. A. Kosti, Z. A. Anastassi, and T. E. Simos, “An optimized explicit Runge-Kutta-Nyström method for the numerical solution of orbital and related periodical initial value problems,” Computer Physics Communications, vol. 183, no. 3, pp. 470–479, 2012.
  • J. M. Franco, “Runge-Kutta methods adapted to the numerical integration of oscillatory problems,” Applied Numerical Mathematics, vol. 50, no. 3-4, pp. 427–443, 2004.
  • H. Van de Vyver, “An embedded exponentially fitted Runge-Kutta-Nyström method for the numerical solution of orbital problems,” New Astronomy, vol. 11, no. 8, pp. 577–587, 2006.
  • E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems, vol. 8 of Springer Series in Computational Mathematics, Springer, Berlin, Germany, 2nd edition, 1993.
  • J. M. Farto, A. B. González, and P. Martín, “An algorithm for the systematic construction of solutions to perturbed problems,” Computer Physics Communications, vol. 111, no. 1–3, pp. 110–132, 1998.
  • H. Ramos and J. Vigo-Aguiar, “On the frequency choice in trigonometrically fitted methods,” Applied Mathematics Letters, vol. 23, no. 11, pp. 1378–1381, 2010.
  • G. Vanden Berghe, L. Gr. Ixaru, and H. De Meyer, “Frequency determination and step-length control for exponentially-fitted Runge-Kutta methods,” Journal of Computational and Applied Mathematics, vol. 132, no. 1, pp. 95–105, 2001.
  • J. Vigo-Aguiar and H. Ramos, “Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations,” Journal of Computational and Applied Mathematics, vol. 158, no. 1, pp. 187–211, 2003.
  • G. Vanden Berghe and M. Van Daele, “Exponentially-fitted Obrechkoff methods for second-order differential equations,” Applied Numerical Mathematics, vol. 59, no. 3-4, pp. 815–829, 2009.
  • Z. Chen, X. You, X. Shu, and M. Zhang, “A new family of phase-fitted and amplification-fitted Runge-Kutta type methods for oscillators,” Journal of Applied Mathematics, vol. 2012, Article ID 236281, 27 pages, 2012.
  • X. You, Y. Zhang, and J. Zhao, “Trigonometrically-fitted Scheifele two-step methods for perturbed oscillators,” Computer Physics Communications, vol. 182, no. 7, pp. 1481–1490, 2011.
  • W. Gautschi, “Numerical integration of ordinary differential equations based on trigonometric polynomials,” Numerische Mathematik, vol. 3, pp. 381–397, 1961.
  • T. Lyche, “Chebyshevian multistep methods for ordinary differential equations,” Numerische Mathematik, vol. 19, pp. 65–75, 1972.
  • T. E. Simos, “An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions,” Computer Physics Communications, vol. 115, no. 1, pp. 1–8, 1998.
  • H. Van de Vyver, “Stability and phase-lag analysis of explicit Runge-Kutta methods with variable coefficients for oscillatory problems,” Computer Physics Communications, vol. 173, no. 3, pp. 115–130, 2005.
  • G. Vanden Berghe, H. De Meyer, M. Van Daele, and T. Van Hecke, “Exponentially fitted Runge-Kutta methods,” Journal of Computational and Applied Mathematics, vol. 125, no. 1-2, pp. 107–115, 2000.
  • R. P. K. Chan and A. Y. J. Tsai, “On explicit two-derivative Runge-Kutta methods,” Numerical Algorithms, vol. 53, no. 2-3, pp. 171–194, 2010.
  • P. J. van der Houwen and B. P. Sommeijer, “Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions,” SIAM Journal on Numerical Analysis, vol. 24, no. 3, pp. 595–617, 1987.
  • Z. A. Anastassi and T. E. Simos, “Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation,” Journal of Mathematical Chemistry, vol. 37, no. 3, pp. 281–293, 2005.
  • D. P. Sakas and T. E. Simos, “A fifth algebraic order trigonometrically-fitted modified Runge-Kutta Zonneveld method for the numerical solution of orbital problems,” Mathematical and Computer Modelling, vol. 42, no. 7-8, pp. 903–920, 2005.
  • J. M. Franco and M. Palacios, “High-order P-stable multistep methods,” Journal of Computational and Applied Mathematics, vol. 30, no. 1, pp. 1–10, 1990.
  • J. M. Franco, “A class of explicit two-step hybrid methods for second-order IVPs,” Journal of Computational and Applied Mathematics, vol. 187, no. 1, pp. 41–57, 2006.
  • L. Galgani, A. Giorgilli, A. Martinoli, and S. Vanzini, “On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates,” Physica D, vol. 59, no. 4, pp. 334–348, 1992. \endinput