Journal of Applied Mathematics

A Note on Hermite-Hadamard Inequalities for Products of Convex Functions

Feixiang Chen

Full-text: Open access

Abstract

We obtain some new Hermite-Hadamard type inequalities for products of convex functions. We conclude that the results obtained in this work are the refinements of the present results.

Article information

Source
J. Appl. Math., Volume 2013 (2013), Article ID 935020, 5 pages.

Dates
First available in Project Euclid: 14 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.jam/1394808264

Digital Object Identifier
doi:10.1155/2013/935020

Mathematical Reviews number (MathSciNet)
MR3133978

Zentralblatt MATH identifier
06950943

Citation

Chen, Feixiang. A Note on Hermite-Hadamard Inequalities for Products of Convex Functions. J. Appl. Math. 2013 (2013), Article ID 935020, 5 pages. doi:10.1155/2013/935020. https://projecteuclid.org/euclid.jam/1394808264


Export citation

References

  • S. Abramovich, G. Farid, and J. Pečarić, “More about Hermite-Hadamard inequalities, Cauchy's means, and superquadracity,” Journal of Inequalities and Applications, vol. 2010, Article ID 102467, 14 pages, 2010.
  • A. Barani, S. Barani, and S. S. Dragomir, “Refinements of Hermite-Hadamard inequalities for functions when a power of the absolute value of the second derivative is \emphP-convex,” Journal of Applied Mathematics, vol. 2012, Article ID 615737, 10 pages, 2012.
  • M. Bessenyei and Z. Páles, “Hadamard-type inequalities for generalized convex functions,” Mathematical Inequalities & Applications, vol. 6, no. 3, pp. 379–392, 2003.
  • S. S. Dragomir, “Hermite-Hadamard's type inequalities for operator convex functions,” Applied Mathematics and Computation, vol. 218, no. 3, pp. 766–772, 2011.
  • S. S. Dragomir, “Hermite-Hadamard's type inequalities for convex functions of selfadjoint operators in Hilbert spaces,” Linear Algebra and Its Applications, vol. 436, no. 5, pp. 1503–1515, 2012.
  • A. El Farissi, “Simple proof and refinement of Hermite-Hadamard inequality,” Journal of Mathematical Inequalities, vol. 4, no. 3, pp. 365–369, 2010.
  • X. Gao, “A note on the Hermite-Hadamard inequality,” Journal of Mathematical Inequalities, vol. 4, no. 4, pp. 587–591, 2010.
  • B. G. Pachpatte, “On some inequalities for convex functions,” RGMIA Research Report Collection, vol. 6, 2003.
  • B. G. Pachpatte, “A note on integral inequalities involving two log-convex functions,” Mathematical Inequalities & Applications, vol. 7, no. 4, pp. 511–515, 2004.
  • U. S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir, and J. Pečarić, “Hadamard-type inequalities for s-convex functions,” Applied Mathematics and Computation, vol. 193, no. 1, pp. 26–35, 2007.
  • M. Z. Sarikaya, A. Saglam, and H. Yildirim, “On some Hada-mard-type inequalities for h-convex functions,” Journal of Mathematical Inequalities, vol. 2, no. 3, pp. 335–341, 2008.
  • V. Bacak and R. Türkmen, “New inequalities for operator convex functions,” Journal of Inequalities and Applications, vol. 2013, article 190, 2013.
  • E. Set, M. E. Özdemir, and S. S. Dragomir, “On the Hermite-Hadamard inequality and other integral inequalities involving two functions,” Journal of Inequalities and Applications, vol. 2010, Article ID 148102, 9 pages, 2010.