Journal of Applied Mathematics

The Control Data Method: A New Method of Modeling in Population Dynamics

Lin-Fei Nie and Zhi-Dong Teng

Full-text: Open access

Abstract

A novel modeling method for population dynamics is developed. Based on the classical Lotka-Volterra model, we construct a new predator-prey model with unknown parameters to simulate the behaviors of predator and prey. Using a the approximation property and the machine learning approach of artificial neural networks, a tuning algorithm of unknown parameters is obtained and the factual data of predator-prey can be asymptotically stabilized using a neural network controller. Numerical examples and analysis of the results are presented.

Article information

Source
J. Appl. Math., Volume 2013 (2013), Article ID 326161, 8 pages.

Dates
First available in Project Euclid: 14 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.jam/1394808139

Digital Object Identifier
doi:10.1155/2013/326161

Mathematical Reviews number (MathSciNet)
MR3108926

Zentralblatt MATH identifier
06950621

Citation

Nie, Lin-Fei; Teng, Zhi-Dong. The Control Data Method: A New Method of Modeling in Population Dynamics. J. Appl. Math. 2013 (2013), Article ID 326161, 8 pages. doi:10.1155/2013/326161. https://projecteuclid.org/euclid.jam/1394808139


Export citation

References

  • A. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, Md, USA, 1925.
  • V. Volterra, “Variazioni e uttuazioni del numero di individui in specie animali conviventi,” Memorie Accademia Lincei, vol. 2, pp. 31–113, 1926 (Italian).
  • B. G. Murray, Population Dynamics: Alternative Models, Academic Press, New York, NY, USA, 1979.
  • L. S. Chen, Mathematical Models and Methods in Ecology, Science Press, Beijing, China, 1988.
  • H. I. Freedman, Deterministic Mathematical Models in Population Ecology, vol. 57 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1980.
  • J. D. Murray, Mathematical Biology. I. An Introduction, vol. 17 of Interdisciplinary Applied Mathematics, Springer, New York, NY, USA, 3rd edition, 2002.
  • R. Redheffer, “Lotka-Volterra systems with constant interaction coefficients,” Nonlinear Analysis: Theory, Methods & Applications, vol. 46, no. 8, pp. 1151–1164, 2001.
  • Y. Saito, “Permanence and global stability for general Lotka-Volterra predator-prey systems with distributed delays,” Nonlinear Analysis: Theory, Methods & Applications, vol. 47, no. 9, pp. 6157–6168, 2001.
  • Y. Takeuchi, Global Dynamical Properties of Lotka-Volterra Systems, World Scientific Publishing, River Edge, NJ, USA, 1996.
  • Z. Teng, Z. Li, and H. Jiang, “Permanence criteria in non-autonomous predator-prey Kolmogorov systems and its applications,” Dynamical Systems, vol. 19, no. 2, pp. 171–194, 2004.
  • J. Waldrogel, “The period in the Volterra-Lotka predator-prey model,” SIAM Journal on Numerical Analysis, vol. 20, no. 6, pp. 1264–1272, 1983.
  • K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.
  • Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, vol. 191 of Mathematics in Science and Engineering, Academic Press, Boston, Mass, USA, 1993.
  • K. S. Narendra, “Adaptive control using neural networks,” in Neural Networks for Control, W. T. Miller, R. S. Sutton, and P. J. Werbos, Eds., pp. 115–142, MIT Press, Cambridge, Mass, USA, 1991.
  • K. S. Narendra and A. M. Annaswamy, “A new adaptive law for robust adaptation without persistent excitation,” IEEE Transactions on Automatic Control, vol. 32, no. 2, pp. 134–145, 1987.
  • K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural networks,” IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 4–27, 1990.
  • K. S. Narendra and K. Parthasarathy, “Gradient methods for the optimization of dynamical systems containing neural networks,” IEEE Transactions on Neural Networks, vol. 2, no. 2, pp. 252–262, 1991.
  • S. Jagannathan, “Discrete-time CMAC NN control of feedback linearizable nonlinear systems under a persistence of excitation,” IEEE Transactions on Neural Networks, vol. 10, no. 1, pp. 128–137, 1999.
  • Y.-G. Leu, W.-Y. Wang, and T.-T. Lee, “Robust adaptive fuzzy-neural controllers for uncertain nonlinear systems,” IEEE Transactions on Robotics and Automation, vol. 15, no. 5, pp. 805–817, 1999.
  • J.-X. Xu and Z. Qu, “Robust iterative learning control for a class of nonlinear systems,” Automatica, vol. 34, no. 8, pp. 983–988, 1998.
  • P. Jiang and R. Unbehauen, “Iterative learning neural network control for nonlinear system trajectory tracking,” Neurocomputing, vol. 48, pp. 141–153, 2002.
  • T. Hayakawa, W. M. Haddad, and K. Y. Volyanskyy, “Neural network hybrid adaptive control for nonlinear uncertain impulsive dynamical systems,” Nonlinear Analysis: Hybrid Systems, vol. 2, no. 3, pp. 862–874, 2008.
  • K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural Networks, vol. 4, no. 2, pp. 251–257, 1991.
  • F. L. Lewis, A. Yesildirak, and S. Jagannathan, Neural Network Control of Robot Manipulators and Nonlinear Systems, Taylor, New York, NY, USA, 1999.