Journal of Applied Mathematics
- J. Appl. Math.
- Volume 2013 (2013), Article ID 547261, 11 pages.
Well-Posedness, Blow-Up Phenomena, and Asymptotic Profile for a Weakly Dissipative Modified Two-Component Camassa-Holm Equation
Full-text: Open access
Abstract
We study the Cauchy problem of a weakly dissipative modified two-component Camassa-Holm equation. We firstly establish the local well-posedness result. Then we present a precise blow-up scenario. Moreover, we obtain several blow-up results and the blow-up rate of strong solutions. Finally, we consider the asymptotic behavior of solutions.
Article information
Source
J. Appl. Math., Volume 2013 (2013), Article ID 547261, 11 pages.
Dates
First available in Project Euclid: 14 March 2014
Permanent link to this document
https://projecteuclid.org/euclid.jam/1394808127
Digital Object Identifier
doi:10.1155/2013/547261
Mathematical Reviews number (MathSciNet)
MR3100837
Zentralblatt MATH identifier
06950742
Citation
Mi, Yongsheng; Mu, Chunlai. Well-Posedness, Blow-Up Phenomena, and Asymptotic Profile for a Weakly Dissipative Modified Two-Component Camassa-Holm Equation. J. Appl. Math. 2013 (2013), Article ID 547261, 11 pages. doi:10.1155/2013/547261. https://projecteuclid.org/euclid.jam/1394808127
References
- R. Camassa and D. D. Holm, “An integrable shallow water equation with peaked solitons,” Physical Review Letters, vol. 71, no. 11, pp. 1661–1664, 1993.Mathematical Reviews (MathSciNet): MR1234453
Zentralblatt MATH: 0972.35521
Digital Object Identifier: doi:10.1103/PhysRevLett.71.1661 - M. Chen, S.-Q. Liu, and Y. Zhang, “A two-component generalization of the Camassa-Holm equation and its solutions,” Letters in Mathematical Physics, vol. 75, no. 1, pp. 1–15, 2006.Mathematical Reviews (MathSciNet): MR2207043
Zentralblatt MATH: 1105.35102
Digital Object Identifier: doi:10.1007/s11005-005-0041-7 - Z. Popowicz, “A 2-component or $N=2$ supersymmetric Camassa-Holm equation,” Physics Letters A, vol. 354, no. 1-2, pp. 110–114, 2006.Mathematical Reviews (MathSciNet): MR2220696
Digital Object Identifier: doi:10.1016/j.physleta.2006.01.027 - H. Holden and X. Raynaud, “Global conservative solutions of the Camassa-Holm equation–-a Lagrangian point of view,” Communications in Partial Differential Equations, vol. 32, no. 10-12, pp. 1511–1549, 2007.Mathematical Reviews (MathSciNet): MR2372478
Zentralblatt MATH: 1136.35080
Digital Object Identifier: doi:10.1080/03605300601088674 - H. Holden and X. Raynaud, “Dissipative solutions for the Camassa-Holm equation,” Discrete and Continuous Dynamical Systems A, vol. 24, no. 4, pp. 1047–1112, 2009.Mathematical Reviews (MathSciNet): MR2505693
Zentralblatt MATH: 1178.65099
Digital Object Identifier: doi:10.3934/dcds.2009.24.1047 - Y. Zhou, “Stability of solitary waves for a rod equation,” Chaos, Solitons and Fractals, vol. 21, no. 4, pp. 977–981, 2004.Mathematical Reviews (MathSciNet): MR2042814
Zentralblatt MATH: 1046.35094
Digital Object Identifier: doi:10.1016/j.chaos.2003.12.030 - Z. Jiang, L. Ni, and Y. Zhou, “Wave breaking of the Camassa-Holm equation,” Journal of Nonlinear Science, vol. 22, no. 2, pp. 235–245, 2012.Mathematical Reviews (MathSciNet): MR2912327
Zentralblatt MATH: 1247.35104
Digital Object Identifier: doi:10.1007/s00332-011-9115-0 - Y. Zhou and H. Chen, “Wave breaking and propagation speed for the Camassa-Holm equation with $\kappa {\,\neq\,}0$,” Nonlinear Analysis. Real World Applications. An International Multidisciplinary Journal, vol. 12, no. 3, pp. 1875–1882, 2011.Mathematical Reviews (MathSciNet): MR2781903
Zentralblatt MATH: 1215.35047
Digital Object Identifier: doi:10.1016/j.nonrwa.2010.12.005 - A. Constantin and R. I. Ivanov, “On an integrable two-component Camassa-Holm shallow water system,” Physics Letters A, vol. 372, no. 48, pp. 7129–7132, 2008.Mathematical Reviews (MathSciNet): MR2474608
Zentralblatt MATH: 1227.76016
Digital Object Identifier: doi:10.1016/j.physleta.2008.10.050 - G. Falqui, “On a Camassa-Holm type equation with two dependent variables,” Journal of Physics A, vol. 39, no. 2, pp. 327–342, 2006.Mathematical Reviews (MathSciNet): MR2198963
Zentralblatt MATH: 1084.37053
Digital Object Identifier: doi:10.1088/0305-4470/39/2/004 - J. Escher, O. Lechtenfeld, and Z. Yin, “Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation,” Discrete and Continuous Dynamical Systems A, vol. 19, no. 3, pp. 493–513, 2007.Mathematical Reviews (MathSciNet): MR2335761
Zentralblatt MATH: 1149.35307
Digital Object Identifier: doi:10.3934/dcds.2007.19.493 - C. Guan and Z. Yin, “Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system,” Journal of Differential Equations, vol. 248, no. 8, pp. 2003–2014, 2010.Mathematical Reviews (MathSciNet): MR2595712
Zentralblatt MATH: 1190.35039
Digital Object Identifier: doi:10.1016/j.jde.2009.08.002 - C. Guan and Z. Yin, “Global weak solutions for a two-component Camassa-Holm shallow water system,” Journal of Functional Analysis, vol. 260, no. 4, pp. 1132–1154, 2011.Mathematical Reviews (MathSciNet): MR2747018
Zentralblatt MATH: 1210.35209
Digital Object Identifier: doi:10.1016/j.jfa.2010.11.015 - D. Henry, “Infinite propagation speed for a two component Camassa-Holm equation,” Discrete and Continuous Dynamical Systems B, vol. 12, no. 3, pp. 597–606, 2009.Mathematical Reviews (MathSciNet): MR2525158
Zentralblatt MATH: 1180.35458
Digital Object Identifier: doi:10.3934/dcdsb.2009.12.597 - G. Gui and Y. Liu, “On the Cauchy problem for the two-component Camassa-Holm system,” Mathematische Zeitschrift, vol. 268, no. 1-2, pp. 45–66, 2011.Mathematical Reviews (MathSciNet): MR2805424
Zentralblatt MATH: 1228.35092
Digital Object Identifier: doi:10.1007/s00209-009-0660-2 - O. G. Mustafa, “On smooth traveling waves of an integrable two-component Camassa-Holm shallow water system,” Wave Motion, vol. 46, no. 6, pp. 397–402, 2009.Mathematical Reviews (MathSciNet): MR2598637
Zentralblatt MATH: 1231.76063
Digital Object Identifier: doi:10.1016/j.wavemoti.2009.06.011 - Q. Hu and Z. Yin, “Well-posedness and blow-up phenomena for a periodic two-component Camassa-Holm equation,” Proceedings of the Royal Society of Edinburgh A, vol. 141, no. 1, pp. 93–107, 2011.Mathematical Reviews (MathSciNet): MR2773441
Zentralblatt MATH: 1213.35134
Digital Object Identifier: doi:10.1017/S0308210509001218 - Q. Hu and Z. Yin, “Global existence and blow-up phenomena for a periodic 2-component Camassa-Holm equation,” Monatshefte für Mathematik, vol. 165, no. 2, pp. 217–235, 2012.Mathematical Reviews (MathSciNet): MR2886131
Zentralblatt MATH: 1258.35175
Digital Object Identifier: doi:10.1007/s00605-011-0293-5 - D. Holm, L. Ó. Náraigh, and C. Tronci, “Singular solutions of a modified two-component Camassa-Holm equation,” Physical Review E, vol. 79, Article ID 016601, 2009.Mathematical Reviews (MathSciNet): MR2552212
Digital Object Identifier: doi:10.1103/PhysRevE.79.016601 - G. Lv and M. Wang, “Some remarks for a modified periodic Camassa-Holm system,” Discrete and Continuous Dynamical Systems A, vol. 30, no. 4, pp. 1161–1180, 2011.Mathematical Reviews (MathSciNet): MR2812959
Zentralblatt MATH: 1241.35170
Digital Object Identifier: doi:10.3934/dcds.2011.30.1161 - Y. Fu, Y. Liu, and C. Qu, “Well-posedness and blow-up solution for a modified two-component periodic Camassa-Holm system with peakons,” Mathematische Annalen, vol. 348, no. 2, pp. 415–448, 2010.Mathematical Reviews (MathSciNet): MR2672309
Zentralblatt MATH: 1207.35074
Digital Object Identifier: doi:10.1007/s00208-010-0483-9 - S. Yu, “Well-posedness and blow-up for a modified two-component Camassa-Holm equation,” Applicable Analysis, vol. 91, no. 7, pp. 1321–1337, 2012.Mathematical Reviews (MathSciNet): MR2946068
Zentralblatt MATH: 1252.35093
Digital Object Identifier: doi:10.1080/00036811.2011.569495 - C. Guan, K. Karlsen, and Z. Yin, “Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation, Nonlinear partial differential equations and hyperbolic wave phenomena,” in Contemporary Mathematics, vol. 526, pp. 199–220, American Mathematical Society, Providence, RI, USA, 2010.
- W. Tan and Z. Yin, “Global dissipative solutions of a modified two-component Camassa-Holm shallow water system,” Journal of Mathematical Physics, vol. 52, no. 3, Article ID 033507, 2011.
- Z. Guo and L. Ni, “Persistence properties and unique continuation of solutions to a two-component Camassa-Holm equation,” Mathematical Physics, Analysis and Geometry, vol. 14, no. 2, pp. 101–114, 2011.Mathematical Reviews (MathSciNet): MR2802456
Zentralblatt MATH: 1245.35108
Digital Object Identifier: doi:10.1007/s11040-011-9089-z - W. Tan and Z. Yin, “Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation,” Journal of Functional Analysis, vol. 261, no. 5, pp. 1204–1226, 2011.Mathematical Reviews (MathSciNet): MR2807097
Zentralblatt MATH: 1220.35155
Digital Object Identifier: doi:10.1016/j.jfa.2011.04.015 - Z. Guo, M. Zhu, and L. Ni, “Blow-up criteria of solutions to a modified two-component Camassa-Holm system,” Nonlinear Analysis. Real World Applications, vol. 12, no. 6, pp. 3531–3540, 2011.Mathematical Reviews (MathSciNet): MR2832990
Zentralblatt MATH: 1231.35200
Digital Object Identifier: doi:10.1016/j.nonrwa.2011.06.013 - Z. Guo and M. Zhu, “Wave breaking for a modified two-component Camassa-Holm system,” Journal of Differential Equations, vol. 252, no. 3, pp. 2759–2770, 2012.Mathematical Reviews (MathSciNet): MR2860639
Zentralblatt MATH: 1230.37093
Digital Object Identifier: doi:10.1016/j.jde.2011.09.041 - L. Jin and Z. Guo, “A note on a modified two-component Camassa-Holm system,” Nonlinear Analysis. Real World Applications, vol. 13, no. 2, pp. 887–892, 2012.Mathematical Reviews (MathSciNet): MR2846888
Zentralblatt MATH: 1238.35132
Digital Object Identifier: doi:10.1016/j.nonrwa.2011.08.024 - W. Rui and Y. Long, “Integral bifurcation method together with a translation-dilation transformation for solving an integrable 2-component Camassa-Holm shallow water system,” Journal of Applied Mathematics, vol. 2012, Article ID 736765, 21 pages, 2012.
- J. B. Li and Y. S. Li, “Bifurcations of travelling wave solutions for a two-component Camassa-Holm equation,” Acta Mathematica Sinica, vol. 24, no. 8, pp. 1319–1330, 2008.Mathematical Reviews (MathSciNet): MR2438303
Zentralblatt MATH: 1182.34064
Digital Object Identifier: doi:10.1007/s10114-008-6207-3 - J.-M. Ghidaglia, “Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time,” Journal of Differential Equations, vol. 74, no. 2, pp. 369–390, 1988.Mathematical Reviews (MathSciNet): MR952903
Zentralblatt MATH: 0668.35084
Digital Object Identifier: doi:10.1016/0022-0396(88)90010-1 - Q. Hu and Z. Yin, “Blowup and blowup rate of solutions to a weakly dissipative periodic rod equation,” Journal of Mathematical Physics, vol. 50, no. 8, Article ID 083503, 2009.Mathematical Reviews (MathSciNet): MR2554431
- Q. Hu, “Global existence and blow-up phenomena for a weakly dissipative 2-component Camassa-Holm system,” Applicable Analysis, vol. 92, no. 2, pp. 398–410, 2013.Mathematical Reviews (MathSciNet): MR3022864
Digital Object Identifier: doi:10.1080/00036811.2011.621893 - Q. Hu, “Global existence and blow-up phenomena for a weakly dissipative periodic 2-component Camassa-Holm system,” Journal of Mathematical Physics, vol. 52, no. 10, Article ID 103701, 2011.
- T. Kato, “Quasi-linear equations of evolution with application to partial differential equations,” in Spectral Theory and Differential Equations, pp. 25–70, Springer, Berlin, Germany, 1975.Mathematical Reviews (MathSciNet): MR407477
- A. Constantin and J. Escher, “Wave breaking for nonlinear nonlocal shallow water equations,” Acta Mathematica, vol. 181, no. 2, pp. 229–243, 1998.Mathematical Reviews (MathSciNet): MR1668586
Zentralblatt MATH: 0923.76025
Digital Object Identifier: doi:10.1007/BF02392586 - L. Ni and Y. Zhou, “A new asymptotic behavior of solutions to the Camassa-Holm equation,” Proceedings of the American Mathematical Society, vol. 140, no. 2, pp. 607–614, 2012.Mathematical Reviews (MathSciNet): MR2846329
Zentralblatt MATH: 1259.37046
Digital Object Identifier: doi:10.1090/S0002-9939-2011-10922-5 - A. A. Himonas, G. Misiołek, G. Ponce, and Y. Zhou, “Persistence properties and unique continuation of solutions of the Camassa-Holm equation,” Communications in Mathematical Physics, vol. 271, no. 2, pp. 511–522, 2007.Mathematical Reviews (MathSciNet): MR2287915
Zentralblatt MATH: 1142.35078
Digital Object Identifier: doi:10.1007/s00220-006-0172-4 - Z. Guo, “Asymptotic profiles of solutions to the two-component Camassa-Holm system,” Nonlinear Analysis. Theory, Methods & Applications A, vol. 75, no. 1, pp. 1–6, 2012.
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- On the Blow-Up of Solutions of a Weakly Dissipative Modified Two-Component
Periodic Camassa-Holm System
Mi, Yongsheng, Mu, Chunlai, and Tao, Weian, Journal of Applied Mathematics, 2012 - Local well-posedness and blow-up result for weakly dissipative Camassa-Holm equations
Park, Sungyong, Advances in Differential Equations, 2015 - On the Cauchy problem for an integrable equation with peakon solutions
Yin, Zhaoyang, Illinois Journal of Mathematics, 2003
- On the Blow-Up of Solutions of a Weakly Dissipative Modified Two-Component
Periodic Camassa-Holm System
Mi, Yongsheng, Mu, Chunlai, and Tao, Weian, Journal of Applied Mathematics, 2012 - Local well-posedness and blow-up result for weakly dissipative Camassa-Holm equations
Park, Sungyong, Advances in Differential Equations, 2015 - On the Cauchy problem for an integrable equation with peakon solutions
Yin, Zhaoyang, Illinois Journal of Mathematics, 2003 - Nonuniform Dependence on Initial Data of a Periodic Camassa-Holm System
Wang, Xiaohuan, Abstract and Applied Analysis, 2014 - Existence and blowing up for a system of the drift-diffusion equation in
$R^2$
Kurokiba, Masaki, Differential and Integral Equations, 2014 - Sharp well-posedness and ill-posedness of a higher-order modified Camassa--Holm
equation
Li, Shiming, Li, Yongsheng, and Yan, Wei, Differential and Integral Equations, 2012 - On the Global Well-Posedness of the Viscous Two-Component Camassa-Holm System
Li, Xiuming, Abstract and Applied Analysis, 2012 - Wave Breaking Phenomenon for DGH Equation with Strong Dissipation
Guo, Zhengguang and Zhao, Min, Abstract and Applied Analysis, 2014 - Blow-up behavior of solutions to the heat equation with nonlinear boundary conditions
Harada, Junichi, Advances in Differential Equations, 2015 - Wave-Breaking Criterion for the Generalized Weakly Dissipative Periodic Two-Component Hunter-Saxton System
Zhang, Jianmei and Tian, Lixin, Journal of Applied Mathematics, 2013